

Gary Chen Director, Safety & Infrastructure Policy gary.chen@sce.com

Docket: 2026-2028 Electrical Corporation Wildfire Mitigation Plans
Docket# 2026-2028-Base-WMPs
Revision 2
Volume 1 of 1

October 27, 2025

Tony Marino
Deputy Director
Office of Energy Infrastructure Safety
715 P Street, 20th Floor
Sacramento, CA 95814

SUBJECT: SCE's Nonsubstantive Errata for the 2026-2028 Wildfire Mitigation Plan (WMP)

Dear Deputy Director Marino:

On September 15, 2025, SCE submitted its 2026-2028 Base WMP R1 to the Office of Energy Infrastructure Safety (OEIS). SCE has identified nonsubstantive errors in the 2026-2028 Base WMP R1 and requests further updates to the WMP. SCE's corrections are set forth in the table and redlines on the following pages.

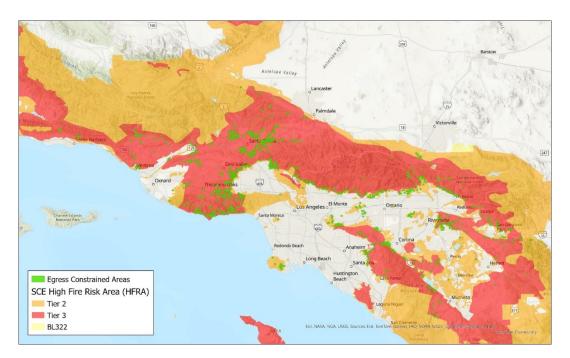
SCE's 2026-2028 WMP and associated materials are available at https://www.sce.com/wmp/.

Sincerely, //s//

Gary Chen
Director, Safety & Infrastructure Policy
gary.chen@sce.com

Table of Nonsubstantive Errata

The table below lists requested corrections to the September 15, 2025 submission of SCE's 2026-2028 Base WMP R1. Note that formatting corrections like the addition of a hyperlink are not redlined in the following pages, but are made directly into SCE's 2026-2028 Base WMP Revision 2 available at sce.com.


Section	Table or Figure	Page	Description of Correction					
	(if applicable)	Number(s)						
SCE List of	N/A	xi	Added Table SCE 5-02a to SCE List of Tables					
Tables								
List of Figures	N/A	xv	Added "Figure SCE-RN-SCE-26-09: SCE Vegetation					
			Management Remote Sensing Journey" to SCE					
524244	21/2	52.52	List of Figures					
5.2.1.2.1.1	N/A	52-53	Removed extra "FRA" on the end of Figure titles					
5.2.1.2.1.3	Table SCE 5-02a	61	for Figures SCE 5-05 and SCE 5-07 Removed underline from numbers in Table SCE 5-					
5.2.1.2.1.3	Table SCE 5-02a	91	02a					
5.2.2.2.7	N/A	96	Added link to Appendix A in footnote					
5.2.2.2.3	N/A	99	Adjusted hyperlink footnote 66 to correct					
5.2.2.2.3	IN/A	99	external page					
5.6.1	N/A	140-141	Added links to Section references					
6.1.3.1	N/A	161	Added hyperlinks to footnote 83					
	·		**					
6.1.3.2	N/A	178	Added hyperlinks to footnote 91 and 92					
7.2	N/A	214	Updated the first sentence of Section 7.2 to note					
			that 92 Frequently De-energized Circuits are					
8.2.1.2	NI/A	228	listed in Table 4-3 in Appendix F. Added "VM-7: Distribution VM Clearances					
8.2.1.2	N/A	228	(Chapter 9.2.1 Inspections for Vegetation					
			Clearances from Distribution Lines (VM-7))" to					
			list of compatible initiatives for covered					
			conductor					
8.2.1.2	N/A	229	Added Table reference link for Table 8-1					
8.2.12.1	N/A	269	Adjusted margins					
8.3.1.1	N/A	277	Added Table reference link for Table 8-1					
8.3.2.1	N/A	282	Added Table reference link for Table 8-1					
8.3.3.1	N/A	284	Removed extra "c" after Figure 8-3					
9.12	N/A	371-372	Adjusted color of Section headers to black					
10.1.2	Table 10-1	382-383	Removed "(compliance)" from three-year total					
10.1.2	Table 10-1	302-303	for SA-11 and SA-12 in Table 10-1					
10.2.1.1	N/A	386	Corrected the misspelling of approximately					
10.2.1.1	N/A	387	Updated the link to PSPS decision-making criteria					
12.2	N/A	480	Added link to Section references					
16.6	14//	700	/ waca min to occitor references					

SCE List of Tables

Table SCE 2-01: Responsible Persons,	6
Table SCE 3-01: Plan Objectives	8
Table SCE 5-01: Risk Quantification Factors	41
Table SCE 5-02: Summary of IWMS Risk Categories	59
Table SCE 5-02a: Circuit Miles Per IWMS Risk Tranche	61
Table SCE 5-03: MARS Conversion Table	96
Table SCE 5-04: Risk Models Containing Separate Modules	142
Table SCE 5-05: Version Control	143
Table SCE 6-01: Mitigation Effectiveness	169
Table SCE 6-02: Mitigation Effectiveness Sources	172
Table SCE 6-03: Preferred Mitigation Portfolio per Risk Tranche	176
Table SCE 6-04: Activity Portfolios	178
Table SCE 6-05: Efficacy of Activity Portfolios	179
Table SCE 6-06: Project Timelines for Select Wildfire Mitigations	183
Table SCE 8-01: Equipment Maintenance and Repair Strategy	290
Table SCE 8-02: List of Possible Findings, Priority Level and Timeframe for Remediation	296
Table SCE 8-03: Equipment Maintenance and Repair Failure Rate	298
Table SCE 8-04: Equipment Maintenance and Repair Ignition Rate	299
Table SCE 8-05: Types of Findings Within The Backlog – Distribution	310
Table SCE 8-06: Types of Findings Within The Backlog – Transmission	310
Table SCE 8-07: Ignition Risk Potential - Past Due Asset Notifications Categorized by Age	312
Table SCE 8-08: Ignition Risk Potential - Number of Past Due Asset Notifications Categorized by Age for Priority Levels	312
Table SCE 8-09: Personnel Qualifications and Training for Asset Inspections, Grid Hardening and Risk Event Inspections	326
Table SCE 9-01: Distribution Circuit Mile Inspections in HFRA and State Responsibility Area (SRA)	363
Table SCE 10-01: Summary of WRF Model Physics Configurations	412
Table SCE 11-01: SCE's Emergency Management Phases	432
Table SCE 11-02: PSPS Tracker Survey Key Findings and Mitigation Measures for Customers With AFN	464
OEIS List of Tables	
Table 3-1: List of Risks and Risk Drivers to Prioritize	12
Table 3-2: SCE Self-Identified Performance Metrics	19
Table 3-3: SCE Summary of Projected WMP Expenditures	22
Table 4-1: SCE High-Level Service Territory Components	27
Table 4-2: Catastrophic Wildfires	31
Table 4-3: Frequently Deenergized Circuits	37
Table 5-1: SCE Risk Modeling Assumptions and Limitations	103
Table 5-2: SCE Summary of Design Basis Scenarios	111
Table 5-3: SCE Summary of Extreme-Event Scenarios	117
Table 5-4: SCE Summary of Risk Models	120
Table 5-5: SCE Summary of Top-Risk Circuits	136
Table 5-6: SCE Risk Assessment Improvement Plan	145
Table 6-1: List of Prioritized Areas in SCE's Service Territory Based on Overall Utility Risk	154

Figure SCE 6-20: Expected Percent Risk Reduction Calculation	199
Figure SCE 6-21 Risk After Calculation	199
Figure SCE 8-01: Cross Section of Covered Conductor (left) and Composite and Fire-Resistant Wrapped	
Poles (right)	223
Figure SCE 8-02: Types of Vibration Dampers: Stockbridge Damper (left) and Spiral Damper (right)	226
Figure SCE 8-03: Re-Route Example in Malibu Area	229
Figure SCE 8-04a: Cover Installed Over Cable Tray System from PG&E's GLDS Pilot in Woodside	232
Figure SCE 8-04b: Cross-Section View of AGDB (above) and GLDS (below)	233
Figure SCE 8-05: A Line Spacer Installed on a Long Span to Mitigate Wire-to-Wire Contact (Left), Close Up	
Line Spacer View (Right)	242
Figure SCE 8-06: Long Span Initiative Remediation Decision Tree	243
Figure SCE 8-07: Image of a Ground Fault Neutralizer	246
Figure SCE 8-08: Isolation (Iso) Bank Transformer (12kV to 12kV)	250
Figure SCE 8-9: Images of Isolation Transformers used for Grounding Conversion	251
Figure SCE 8-10: Sectionalizing Devices Limit De-energization to Smaller Segments	260
Figure SCE 8-11: Remote Grid System Diagram	263
Figure SCE 8-12: Cracked Hendrix Insulator (Drone Capture)	273
Figure SCE 8-13: Drone (left) and SCE Helicopter (right)	273
Figure SCE 8-14: Damaged Pole Carrying 120V	273
Figure SCE 8-15: Rotten / Hollow Guy Stub Pole	274
Figure SCE 8-16: Animal Nest Found on Transmission Switchgear (Drone Capture)	278
Figure SCE 8-17: Distribution Infrared (IR) Inspection of a 12kV Circuit	281
Figure SCE 8-18: Control-Haiwee-Inyokern 115kV line	283
Figure SCE 8-19: SCE Helicopters	284
Figure SCE 9-01: Volume of Open Work Orders	369
Figure SCE 9-02: Volume of Past Due Work Orders	370
Figure SCE 10-01: Live Fuel Moisture Content Calculation	384
Figure SCE 10-01: PSPS LFO & Patrolling Process	386
Figure SCE 10-02: Dopd Alarm Verification Process	393
Figure SCE 10-03.2: The Scheme Measures the Primary Current of a CT by Measuring the Secondary of the	
CT and Then Multiplying by the CTR	394
Figure SCE 10-03: MADEC Flowchart	397
Figure SCE 10-04: Transformer EDD Flowchart	397
Figure SCE 10-05: Fire Potential Index Equation	424
Figure SCE 11-01a: SCE's Emerging Situation Process	433
Figure SCE 11-01b: SCE's Wildfire Operational Flow Diagram	433
Figure SCE 11-01c: SCE's PSPS Operational Flow Diagram	434
Figure SCE-RN-SCE-26-09: SCE Vegetation Management Remote Sensing Journey	340

Figure SCE 5-05: Example of Identified Population Fire Risk Egress-Constrained Locations in SCE HFRAFRA

SCE used historical fire perimeters from CAL FIRE's and Resource Assessment Program (FRAP) database to create hexagons⁴² to create an index based on the relative fire frequency of each location (see <u>Figure SCE 5-06</u>). A higher score indicates a higher historical fire frequency.

⁴² Fire perimeters from Cal Fire FRAP database from 1970 to 2020. Fire Frequency hexagons are based on the same hexagon alignment used to identify population egress constrained locations.

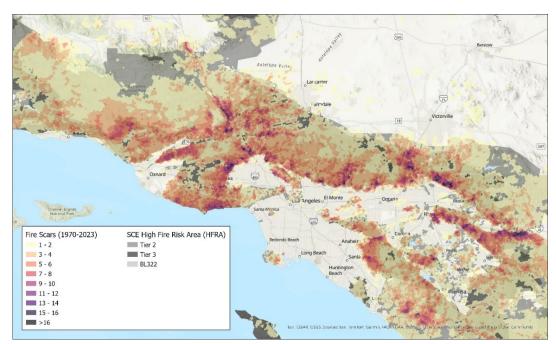


Figure SCE 5-06: Identify Areas with a High Historical Fire Frequency in SCE HFRA

SCE then overlaid the population egress-constrained areas with locations that have experienced high historical fire frequency. SCE flagged hexagons with both limited road availability and a high burn frequency based on these indices as potential Fire Risk Egress Constrained Areas.

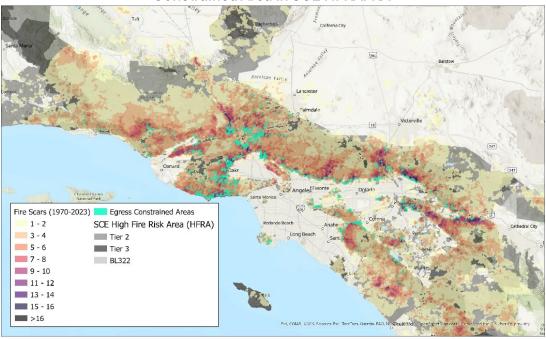


Figure SCE 5-07: Example Overlay of High Historical Frequency of Fires with Fire Risk Egress-Constrained Area in SCE HFRAFRA

Next, SCE used simulated wildfire risk scores around these Fire Risk Egress Constrained Areas, to determine which locations could burn into Fire Risk Egress Constrained Areas within the simulated burn period, using the following steps (see <u>Figure SCE 5-08</u>).

Please see below for Table SCE 5-02a, which shows SCE's total overhead HFTD miles broken out by IWMS risk tranche. This data uses SCE's WRRM 7.6 risk model, which was the model iteration used for 2026-2028 WMP mitigation planning. The circuit mileage data in the table matches the information that SCE transmitted to Energy Safety in Response to Data Request 1, Question 1, which shows 3,218 circuit miles in Severe Risk Areas (SRA).

Table SCE 5-02a - Circuit Miles Per IWMS Risk Tranche

IWMS Risk Tranche	Approximate Circuit Miles					
Severe Risk Areas	<u>3,218</u>					
High Consequence Areas	<u>4,466</u>					
Other HFRA	<u>1,659</u>					
Total	<u>9,343</u>					

As SCE continuously enhances risk modeling inputs and iterations of its risk model, IWMS risk tranche output miles are subject to change. Since the 2023-2025 WMP, SCE's revised risk model incorporated more granular simulations, included an updated fuel model, adjusted asset locations, and enhanced metrics such as fire behavior and wind speeds. Please see SCE's 2025 Wildfire Mitigation Plan Update for more details about updates to risk models since the filing of the 2023-2025 WMP.

Changes to mileage and IWMS designation are also possible during SCE's Review & Revise process, which is discussed in Section 5.2.1.2.2 of SCE's 2026-2028 WMP. This expert-led analysis evaluates local conditions on a project-by-project basis to validate modeled outputs. In certain instances, SCE's inspection photos, geographic information system (GIS), and Google Maps or Street Views, along with local area knowledge from engineers, fire scientists, and emergency operations professionals, including partners such as CAL FIRE, may contradict model outputs. In that case, the recommendation from the detailed SME review would be to convert the SRA designation to a different IWMS designation, or vice versa.

Since the 2023-2025 WMP, the total number of circuit miles designated as Severe Risk Areas has increased based on mileage updates associated with the four main SRA criteria: (1) fire risk egress constrained areas, (2) significant fire consequence, (3) extremely high winds, and (4) communities of elevated fire concern. These changes are explained below.

- Fire Risk Egress Constrained Areas: Increased by approximately 130 miles
- Significant Fire Consequence: Increased by approximately 280 miles
- Extremely High Winds: Decreased by approximately 165 miles
- Communities of Elevated Fire Concern: Decreased by approximately 85 miles

These updates resulted in the following changes to the circuit miles associated with each IWMS risk tranche between the 2023-2025 WMP and the 2026-2028 WMP:

- a net increase in total SRA mileage from approximately 2,950 circuit miles to 3,218 circuit miles.
- <u>a net increase in total High Consequence miles from approximately 4,400 circuit miles to</u> 4,466 circuit miles.
- a net decrease in Other HFRA miles from approximately 2,250 circuit miles to 1,659 circuit miles.

In addition, SCE has been and continues to optimize its reliance on automation to streamline management of PSPS events and improve the accuracy and speed of notifications to customers and other stakeholders.

7.2 Frequently De-Energized Circuits

The narrative must summarize how the electrical corporation will reduce the need for, and impact of, future PSPS implementation on circuits that have been frequently deenergized, as listed in Table 4-3 in Section 4.3.

Table 4-3 in Section 4.3 (the fully populated version of the table is in Appendix F) identifies SCE's 92 76 "Frequently De-energized Circuits," which are defined as circuits that have had three or more PSPS events per calendar year.

SCE has already implemented several of the mitigation measures described in Section 7.1 to mitigate the impacts of PSPS events on these circuits. This includes:

- Covered Conductor: SCE has installed nearly 1,000 miles of insulated conductor on 69 of the circuits.
- RARs and RCS: SCE has upgraded or installed more than 30 automated switches on more than 20 circuits.
- **Weather Stations:** SCE has installed new weather stations to improve situational awareness for 13 of the circuits.

In addition, SCE has implemented PSPS protocols to raise the PSPS windspeed thresholds for nine of the circuits based on new covered conductor installation and some exceptions for bare conductor circuits with minimal risk. SCE has also updated switching protocols to enable customer load to be transferred to adjacent circuits for twelve of the Frequently De-Energized Circuits.

To further reduce the need for, and impact of, future PSPS events on these circuits, SCE will implement the following mitigation measures during the 2026-2028 timeframe to try to reduce the frequency, duration, and scope of PSPS events on the Frequently De-Energized Circuits:

- **Covered Conductor**: SCE plans to install nearly 80 miles of insulated conductor on 12 circuits.
- RARs and RCS: Upgrade or install six automated switches on five circuits.

SCE expects to implement additional circuit segmentation. In addition, 22 circuits are undergoing engineering review to determine potential PSPS grid hardening measures.

7.3 Lessons Learned Since 2023-2025 WMP

Furthermore, the narrative should describe any lessons learned for PSPS events occurring since the electrical corporation's last WMP submission and overall impacts to mitigation methodology in terms of reducing PSPS events in the future.

SCE has not changed this program since its last WMP. Based on miles to date and anticipated remaining scope, SCE plans to be substantially finished with proactive covered conductor installation in its HFRA by the end of this WMP cycle. However, certain factors could extend WCCP past 2028, which include, but are not limited to, modeled risk, HFTD boundaries, GRC decision, change in Targeted Undergrounding (TUG) scope, and change in strategy. Approximately 1,000 distribution circuit miles in HFRA will not have CC or TUG by the end of 2028, if SCE achieves its strive targets. However, as CC is now the overhead standard for SCE, those miles would eventually be hardened. If SCE does not reach its strive miles by the end of 2028, SCE will continue with its CC program in its 2029-2031 WMP.

Justification for each of the changes, including references to lessons learned.

N/A.

A list of planned future improvements and/or updates to the activity, including a timeline for implementation.

SCE is developing an updated standard for covered conductor that will use a newer covered conductor material that provides incremental improvements in reduced thickness and weight, increased moisture blocking, and increased resistance to ice buildup. Based on the timing to finalize the newer design standards and material ordering, SCE anticipates the newer covered conductor will be used for projects in approximately 2027. Also, SCE is re- evaluating its risk assessments and may determine that to mitigate wildfire and WUI conflagration risk, SCE may install covered conductor outside of HFRA, separate and apart from its HFRA covered conductor projects, in the 2026-2028 timeframe. In addition, if undergrounding is not feasible or otherwise limited by one of the factors listed above, SCE would consider alternatives including CC, REFCL, remote grid, etc.

As applicable, a discussion of the status of any undergrounding work plans and progress, as required by Public Utilities Code section 8388.5(f)(2).

N/A.

As applicable, a discussion of any evaluations related to scoping grid hardening projects to account for future grid needs (e.g., load capacity, peak demand, system flexibility).

N/A.

Compatible Initiatives:

- IN-1.1: Distribution HFRI Inspections (Section 8.3.1)
- IN-3: Distribution IR (Section 8.3.3)
- SA-11: Early Fault Detection (EFD) (Chapter 10.3.1)
- SA-14: Distribution Open Phase Detection (DOPD) (Chapter 10.3.1)
- SH-1: Covered Conductor (Section 8.2.1.1)
- SH-16: Vibration Damper Retrofit (Section 8.2.1.2)
- SH-17: REFCL (Ground Fault Neutralizer) (Section 8.2.6.1)
- SH-18: REFCL (Grounding Conversion) (Section 8.2.6.2)
- SH-19: FR Wrap Expanded Deployment (Section 8.2.3.1)
- SH-5: Remote Controlled Automatic Reclosers (Section 8.2.8.1)
- VM-2.1: Additional Structure Brushing (Chapter 9.4.1.2)
- VM-2.2: Compliance Structure Brushing (Chapter 9.4.1.1)

¹¹² Proactive covered conductor installation may continue beyond 2028 based on changing HFRA boundaries or shifts in strategy. If the Petition for Modification to the HFTD boundaries is approved, newly in-scope areas would be evaluated for proactive CC deployment. SCE is evaluating risk from traveling faults (i.e., faults that occur in a particular location, but travel along connected wires and release fault energy upstream or downstream), which may result in a programmatic expansion of WCCP.

components called "hot spots" that may indicate deterioration in structures and equipment not visible to the naked eye. IR inspections can detect conditions that may indicate a wide range of anomalies, including, but not limited to, failing switch and fuse contacts, poor connections, loose bushings, and overloaded/failing transformers.

Most inspections are performed from ground vehicles; however, a small percentage of the inspections require the inspector to hike to the structure or perform the inspection from a helicopter.

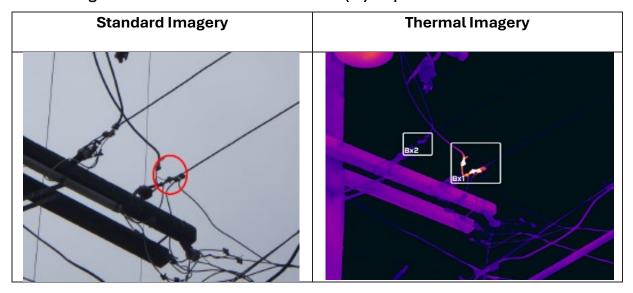


Figure SCE 8-17: Distribution Infrared (IR) Inspection of a 12kV Circuit

Include relevant visuals and graphics depicting the workflow and decision-making process the electrical corporation uses for the inspection activity (program).

Figure 8-3c depicts the workflow and decision process regarding distribution infrared (IR) inspections.

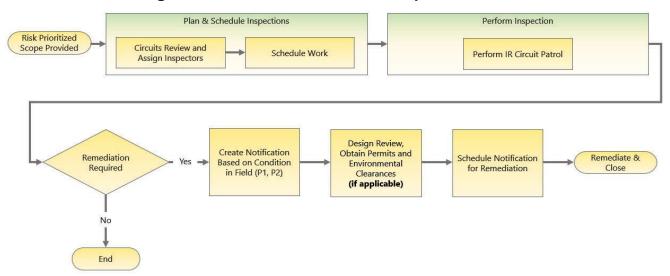


Figure 8-3e: Distribution Infrared Inspections Workflow

Table 10-1: Situational Awareness Targets by Year

Table 10-1: Situational Awareness Targets by Year												
Initiative	Quantitative or Qualitative Target	Activity (tracking ID #)	Previous Tracking ID, if applicable	Target Unit	2026 End of year total/Completion Date [1]	% risk reduction for 2026	2027 Total/Status [1]	% risk reduction for 2027	2028 Total/Status [1]	% risk reduction for 2028	Three-year total	Section; Page number
10.2 Environmental Monitoring Systems	Quantitative	Fuel Sampling (SA- 17)	N/A	Fuel Samples	Take 332 fuel samples per year.	N/A [2]	Take 332 fuel samples per year.	N/A [2]	Take 332 fuel samples per year.	N/A [2]	996	10.2; p. 384
10.2 Environmental Monitoring Systems	Qualitative	Weather Station Coverage (SA-19)	N/A	N/A	Continue to maintain a map of weather station point coverage for future evaluation of potential weather station installs, if there is an identified operational need.	N/A	Continue to maintain a map of weather station point coverage for future evaluation of potential weather station installs, if there is an identified operational need.	N/A	Continue to maintain a map of weather station point coverage for future evaluation of potential weather station installs, if there is an identified operational need.	N/A	N/A	10.2; p. 384
10.3 Grid Monitoring Systems	Quantitative	Early Fault Detection (EFD) (SA-11)	SA-11	EFD installed	Install EFD at 200 locations, subject to resource/external constraints and other execution risks	0.07%	Install EFD at 200 locations, subject to resource/external constraints and other execution risks	0.09%	Install EFD at 200 locations, subject to resource/external constraints and other execution risks	0.09%	600 (compliance)	10.3; p. 393
10.3 Grid Monitoring Systems	Qualitative	Distribution Open Phase Detection (DOPD) (SA-14)	N/A	N/A	Evaluate DOPD integration with field area network (FAN) technology	N/A	Develop future DOPD program strategy and implementation plan based on 2026 results	N/A	Develop future DOPD program strategy and implementation plan based on 2026 and 2027 results	N/A	N/A	10.3; p. 393
10.4 Ignition Detection Systems	Quantitative	HD Camera Artificial Intelligence (AI) Uptime (SA-15)	N/A	Al uptime validation checks	Validate AI uptime on available cameras four times a year	N/A [2]	Validate Al uptime on available cameras four times a year	N/A [2]	Validate Al uptime on available cameras four times a year	N/A [2]	Validate AI uptime on available cameras 12 times	10.4; p. 407
10.4 Ignition Detection Systems	Qualitative	HD Camera Improvement (SA- 18)	N/A	N/A	Develop long-term strategy to manage and identify opportunities to improve SCE's camera system	N/A	Implement long-term strategy for camera management and improvement	N/A	Implement long term- strategy for camera management and improvement	N/A	N/A	10.4; p. 407
10.5 Weather Forecasting	Quantitative	Weather Model Verification (SA-16)	N/A	Weather model verifications	Perform four weather model verifications a year	N/A [2]	Perform four weather model verifications a year	N/A [2]	Perform four weather model verifications a year	N/A [2]	Perform 12 weather model verifications	10.5; p. 414
10.5 Weather Forecasting	Qualitative	Weather and Fuels Modeling (SA-3)	SA-3	N/A	Continually evaluate and implement new weather forecast solutions, such as AI, where value may be added	N/A	Continually evaluate and implement new weather forecast solutions, such as AI, where value may be added	N/A	Continually evaluate and implement new weather forecast solutions, such as AI, where value may be added	N/A	N/A	10.5; p. 414

Initiative	Quantitative or Qualitative Target	Activity (tracking ID #)	Previous Tracking ID, if applicable	Target Unit	2026 End of year total/Completion Date [1]	% risk reduction for 2026	2027 Total/Status [1]	% risk reduction for 2027	2028 Total/Status [1]	% risk reduction for 2028	Three- year total	Section; Page number
10.5.5 Weather Station Maintenance and Calibration	Quantitative	Weather Station Calibrations (SA-12)	N/A	Weather stations calibrated	Complete 1,400 calibrations	N/A [2]	Complete 1,400 calibrations	N/A [2]	Complete 1,400 calibrations	N/A [2]	4,200 (compliance)	10.5.5; p. 426
10.5.5 Weather Station Maintenance and Calibration	Qualitative	Weather Station Calibration Procedures (SA-13)	N/A	N/A	Review, update, and consolidate program procedures for weather station calibration	N/A	Review and update program procedures as needed	N/A	Review and update program procedures as needed	N/A	N/A	10.5.5; p. 426

^[1] The completion date for all qualitative targets is December 31, unless otherwise specified.

^[2] These quantitative targets support situational awareness, but do not directly reduce outage or wildfire risk.

10.2.1.1 Weather Station Coverage (SA-19)

Weather stations are used to provide valuable situational awareness for PSPS decision-making and help improve weather models. SCE's weather stations provide data points such as temperature measurements, wind speeds, wind direction, dew point, and relative humidity. Weather conditions can differ significantly at any given time within the HFRA of SCE's service territory, due to the territory's large size, numerous climate zones and diverse topography. For example, Southern California's mountains have rapid elevation changes and differing canyon orientations, which create localized weather zones.

SCE monitors and analyzes weather data at the circuits and circuit segments, where available, across HFRA to inform operational decisions such as deploying PSPS protocols during elevated weather conditions. Granular, circuit-level or circuit-segment-level weather data is used by incident management team (IMT) personnel to inform initiation of PSPS events, customer notifications, de-energization decisions for SCE circuits, reenergizations, as well as limiting the impact of PSPS to the extent possible to particular segments of a circuit instead of a full circuit, where applicable, dependent on circuit configurations.

To improve existing weather models and access more granular, real-time information during wildfire risk conditions, SCE has increased the number of weather stations across distribution, sub-transmission and bulk-transmission circuits in its HFRA since 2018. A higher density of weather stations allows SCE to validate real-time conditions in the field during elevated fire conditions. Adding weather stations to transmission circuits helped improve the visibility of the service territory for real-time weather monitoring, as well as improve weather forecasts along transmission circuits due to the development of machine learning forecasts using historical weather station observations for model training. Having more stations also expands and increases the granularity of data to enable improved weather forecasting capabilities at the circuit and circuit-section level.

As of January 2025, SCE has over 1,780 weather stations deployed across its HFRA, including over 160 stations on the sub-transmission and bulk-transmission system. SCE used industry equipment standards and placement techniques to capture the wind profiles of its circuits, while at times siting more than one station per circuit to account for variations in terrain, as well as circuit segmentation to minimize customer impacts.

SCE has approximately approximately 1,450 weather stations capable of relaying 30-second, real time reads. Cellular communications are necessary for increased data collection intervals, thus satellite-only stations in remote areas (approximately 340 currently) are unable to relay data at 30-second intervals. SCE enabled 30-second reads periodically during the 2024 PSPS events in order to evaluate potential operational benefits to PSPS in real-time. SCE will continue to evaluate the operational benefits associated with 30-second reads. If operational benefits are evident, SCE will further integrate metrics associated with 30-second observations into PSPS monitoring applications.

Generalized location of the system / locations measured by the system (e.g., HTFD, entire service territory)