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Executive Summary 

The Risk and Data Analytics (RaDA) team produces a variety of event probability, consequence, and risk models 

in support of risk mitigation work prioritization and planning. As these models have evolved, the RaDA team has 

adopted several core algorithms and methodologies for model development and delivery. This document 

provides an overview of the core RaDA model development tools. 

Modeling Algorithms 

The RaDA team explores a variety of machine learning algorithms during event model development to 

determine which algorithm best suits a particular model’s objectives. An overview is provided for the three 

model algorithms currently used by the RaDA team for production event probability models: 

• Maximum Entropy (MaxEnt) 

• Extreme Gradient Boosting Classification (XGBoost) 

• Logistic Regression 

Model Performance Metrics 

Several performance and feature metrics are considered during model development to determine when 

predictive model performance is optimal. Overview descriptions and guidance on interpretation of results are 

provided for the most commonly used metrics. 

Model Results Methodologies 

The RaDA team probability, consequence, and risk models have been developed to support risk mitigation work 

prioritization and planning. Frequently, work planning teams need the RaDA model data results to be 

transformed to match with the particular mitigation program’s planning requirements. The RaDA team has 

developed the following model result transform methodologies in support of mitigation program work planning 

requirements: 

• System Hardening Circuit Segments 

• Model Results Aggregation 

• Model Results Compositing 

Future Plans 

New algorithms and methodologies are developed as needed for new model development and to fulfill new 

user requirements. In response to user requests, there are several new methodologies planned for the 

aggregation of model results to Isolation Zone, Support Structure, and Regional views. 
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1 Introduction 
The Risk and Data Analytics (RaDA) team produces a variety of event probability, consequence, and risk models 

in support of risk mitigation work prioritization and planning. The RaDA team has adopted several core 

algorithms and methodologies for model development and delivery. This document provides an overview of the 

core RaDA model development tools, including: 

• Modeling Algorithms used to match model objectives with machine learning capabilities. 

• Model Performance Metrics used to compare and improve model performance. 

• Model Results Methodologies for delivering model outputs that support user needs. 

 

1.1 Document Suite 

This document is part of the documentation suite for: 

• WDRM v4 Documentation 

• Wildfire Fire Consequence Model v4 Documentation 

• Distribution Network Event Probability Models v4 Documentation 

This document will be updated to support additional RaDA team products as they are released, including the 

Reliability and Public Safety Risk Models currently under development. 

This document presents the shared algorithms and methodologies used for development of event probability, 

consequence, and risk models produced by the RaDA team. 

This document provides the lay reader with a broad understanding of the applicability and use of the described 

algorithms and methodologies. The document does not provide comprehensive detailed mathematical or 

scientific descriptions. 
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2 Modeling Algorithms 
The RaDA team explores a variety of machine learning algorithms during event model development to 

determine which algorithm best suits a particular model’s objectives. Currently, three model algorithms are 

used by the RaDA team for production event probability models: 

• MaxEnt 

• Extreme Gradient Boosting Classification (XGBoost) 

• Logistic Regression 

The following sections provide overviews of each of the three modeling algorithms and their applicability to 

RaDA event probability models. 

 

2.1 MaxEnt 

Many event probability models use a maximum entropy algorithm, a modeling technique developed by 

computer scientists at AT&T research and Princeton University for the modeling of ecological prevalence of 

species. RaDA team event probability models using the maximum entropy approach have been implemented 

using MaxEnt software. 

2.1.1 Overview 

MaxEnt probability models are trained on outage locations and their associated environmental and asset 

attribute data organized onto a set of 100m by 100m pixels that cover PG&E electrical grid. In MaxEnt 

terminology, event locations are presence observations, and the entire set of electrical grid pixels are the model 

domain. To accrue enough data to identify spatial patterns in a set of events, training data typically spans 

several years. Although it is possible to filter training data by coarse temporal criteria, the typical MaxEnt model 

is dedicated to spatial, not temporal, patterns. MaxEnt models produce raw relative values that correspond with 

the relative number of likely grid events by pixel location. Given known event rates, the raw relative event 

values can be calibrated through a logistic mapping into pixel-based event probabilities. 

2.1.2 Constructing MaxEnt Models 

MaxEnt delivers an approach for estimating the relative event occurrence rate given a modest number of known 

event locations. MaxEnt fits a statistical distribution of covariate values for event locations that is consistent 

with the values at known event locations, but otherwise as similar as possible to the distribution of values found 

among all modeled locations. The similarity criteria are enforced using a metric called the relative information 

entropy between the distributions of covariate values associated with event locations and all modeled locations. 

The larger relative information entropy, the more similar are the two distributions. Hence, the overall approach 

is referred to as a maximum entropy estimation of the relative event occurrence rate. 

For the distribution event probability models the goal is to use MaxEnt to model the occurrence of ignition and 

failure/outage events using distribution asset attributes and environmental conditions as model covariates.  

The MaxEnt software normalizes its input and target output variables, and therefore produces a normalized 

output where all predicted probabilities for the domain of a model sum to a value of 1. A scaling parameter is 

used to calibrate the sum of model domain outputs to match historical fire season event counts.  

WMP-Discovery2026-2028_DR_OEIS_002-Q013Atch01
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Maximum entropy as an optimization target has been broadly applied to many types of optimization problems. 

Therefore, online searches for key words such as “maximum entropy models” may yield results that are not 

related to the approach implemented by MaxEnt. 

2.1.3 Applicability to the Event Probability Models 

An important distinction between MaxEnt and many other Machine Learning classification methods is that 

MaxEnt is a presence-only modeling tool. A presence-only modeling approach trains a model using the locations 

of known events without requiring ground truth absence data – identification of locations where events cannot 

occur. Instead, presence-only modeling like MaxEnt compares known event location attributes with the 

attributes at all other locations. 

 At first glance, this might seem like an odd choice – whether there is an event or not on the grid is a clear 

criterion – however, there are several aspects of the wildfire modeling problem that benefit from the choice. 

The following aspects of MaxEnt make it useful for spatially oriented contact from object event probability 

models: 

• Contact from object events are typically environmentally driven and rely on spatial data to understand 

causal paths 

• MaxEnt is open-source software with a robust community of users and peer review of its applications 

• The MaxEnt software includes support for: 

• Spatial data sets and outputs 

• Feature generation from covariates such as interactions, hinges, thresholds, etc. 

• Regularization that adaptively down weights features that lack or degrade predictive power 

• Support to produce train and test performance metrics 

2.1.4 Implementation 

The MaxEnt software used for event probability model development is sourced from the Stanford Center for 

Conservation Biology open source library. 

2.1.4.1 Model Data Preparation 

There are three types of data that need to be acquired to build an event probability model using MaxEnt: 

• Asset attributes for geometry and classifying characteristics such as material, size, age, etc. 

• Known event locations used for training, testing, and validating models 

• Covariate Values that change over time and space 

Some covariates, such as weather and other time-based variables, require derivation, as the data should 

represent the conditions under which known events have occurred. To support multi-year event datasets, 

the derivation typically requires statistical extracts of multi-year sequences of weather data. Typical 

derivations for time-based data such as wind speed and fuel moisture include average values, percentile 

values, counts of days beyond threshold limits, etc. 

WMP-Discovery2026-2028_DR_OEIS_002-Q013Atch01



5 
 

Internal  

All collected data is assigned by its location onto a common set of 100m square pixels that overlay the 

geometry of the distribution network grid. The grid pixel values are stored into raster datasets for MaxEnt 

modelling. 

2.1.4.2 Iterative Model Process 

The process for building an event probability model using MaxEnt is similar to that used for most machine 

learning (ML) technologies. MaxEnt models are built through an exploratory process managed by a data 

scientist, iteratively configuring and evaluating candidate models. 

A MaxEnt model run configuration specifies options like: 

• Source pixel raster datasets 

• Attributes and covariates available for modeling events 

• Event training, testing, and validation datasets 

• Options for model fitting techniques and output scaling 

• Options for model evaluation 

Once a candidate model has been built from a configuration, MaxEnt produces a variety of reports to assist 

with model performance evaluation, including:  

• Model output evaluation 

• Predicted event probabilities 

• Model performance metrics for train and test event data 

• Model fit performance 

• Jackknife charts 

• Dropped known events due to insufficient attribute or covariate values 
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2.2 Extreme Gradient Boosting Classification (XGBoost) 

Most distribution equipment asset event probability models use XGBOOST, a boosted decision tree modeling 

algorithm. 

2.2.1 Overview 

XGBoost is a powerful machine learning algorithm used for predictive modeling. XGBoost combines multiple 

weak models, typically decision trees, to create a combined, robust predictive model.  The combined model is 

created using gradient boosting, which iteratively creates new combined model configurations to correct 

prediction errors produced by previous models. 

Key features of XGBoost include: 

• Handling of missing values – a common issue for real world data sets. 

• Fast and efficient execution on large data sets 

• Often provides superior performance against alternative algorithms. 

 

2.2.2 Applicability to the Event Probability Models 

The distribution equipment asset event probability models are classification problems and therefore best solved 

using a classifier modeling algorithm. Using a decision tree-based classifier algorithm provides model feature 

interpretability through which feature causality can be confirmed by Subject Matter Experts (SMEs). While a 

single tree model might work well for small data sets, tree-based classifier algorithms tend to overfit larger 

training data sets like those used for the event probability models, reducing predictive power against novel data 

sets. As a result, combinations of multiple tree models are typically used for large data sets. 

There are two common approaches for combining tree models, bagging and boosting. Bagging algorithms train 

multiple decision tree models in parallel, while boosting trains models serially. Bagging, or parallel modeling, 

does not resolve the overfit issues experienced with single tree models. Boosting, which includes a process for 

pruning out specific tree models, is typically able to minimize model overfit by iteratively training to the residual 

error produced by its prior tree. 

Another advantage for model boosting is that it produces better performance on imbalanced training data sets 

with very few actual events in comparison to the number of non-events.  

There are multiple boosting algorithms available, such as: 

• Adaptive boosting (Adaboost) 

• Gradient Boosting (GB) 

• XGBoost 

Adaboost is a basic boosting algorithm and use decision stumps, which are decision trees based on a single 

feature, to compare performance to determine relative feature importance.  Gradient Boosting works similarly 

to AdaBoost but uses fully trained decision trees rather than stumps. XGBoost follows the same algorithm as 

Gradient Boosting but uses advanced regularization techniques to suppress weights, prevent overfitting, and 

enhance its performance against novel data set. Through RaDA team model development research, XGBoost has 

been selected for building the distribution event probability models.  
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2.2.3 Implementation 

As of document publication, XGBoost 1.7.6 is used for model development. 

2.2.3.1 Model Data Preparation 

There are three types of data that need to be acquired to build an event probability model using XGBoost: 

• Asset attributes for geometry and classifying characteristics such as material, size, age, etc. 

• Known event locations used for training, testing, and validating models 

• Covariate Values that change over time and space.  

Some covariates, such as weather and other time-based variables, require derivation, as the data should 

represent the conditions under which known events have occurred. To support multi-year event datasets, 

the derivation typically requires statistical extracts of multi-year sequences of weather data. Typical 

derivations for time-based data such as wind speed and fuel moisture include average values, percentile 

values, counts of days beyond threshold limits, etc. 

Spatial data, like weather data, is assigned to an asset for XGBoost from a common set of 100m square 

pixels that overlay the geometry of the distribution network grid. 

2.2.3.2 Iterative Model Process 

The process for building an event probability model using XGBoost is similar to that used for most ML 

technologies. XGBoost models are built through an exploratory process managed by a data scientist, 

iteratively configuring and evaluating candidate models. 

A XGBoost model run configuration specifies options like: 

• Source datasets 

• Attributes and covariates available for modeling events 

• Event training, testing, and validation datasets 

• Options for model hyperparameters to control regularization and prevent model overfit 

Once a candidate model has been built for a configuration, its performance is evaluated using:  

• Predicted event probabilities 

• Model performance metrics for train and test event data 

• Model feature importance  

• SHAP plots 
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2.3 Logistic Regression 

2.3.1 Overview 

A logistic regression model predicts the probability of discrete outcomes from a set of covariate inputs. A 

discrete outcome can be any set of ordinal values, such as: 

• Yes/No 

• True/False 

• High/Medium/Low 

• Ignition/No Ignition 

For any given set of inputs, a logistical regression model will assign a probability for each possible discrete 

outcome. 

Logistic regression models are structured so that the log of the odds of each outcome is a linear combination of 
the covariate data, which means that once the “log-odds” transform is applied, the model is fit as a standard 
multiple linear regression. The probability that a binary variable y has a specific outcome given a matrix of all 
covariate values associated with all observations the binary variable is a logistic function over all covariates with 
the form:  

 
Where:  

Variable Description 
P(y=1|X) Probability that an input event is associated with a modeled outcome 

βi Covariate correlation coefficients 

Β0 Covariate correlation coefficient mid-point 

i Covariate index 

m Number of covariates 

X Covariates matrix 

xi Covariate vector of values 

 

Logistical regression optimizes a set of logistical functions for each 
covariate. A generic 1-dimensional logistic function is presented in the Figure 
1. The y-axis is the probability of the desired binary outcome (True, Yes, 1, 
etc.) and the x-axis represents the numerical values of one of the input 
covariates. In this example covariate values below -2 are associated with very 
low probability outcomes and values above 2 are associated with very high 
probability outcomes. The function assigns probability value of 0.5 (50/50 
odds) for the desired outcome at the midpoint of the curve located at a 
covariate value of 0.  

During the optimization of the logistical regression model, the location of the 
mid-point 0.5 value along the x-axis can also shifted to the left or right, formulaically expressed as -β0/βi. 
Likewise, the transition steepness of the y-axis from 0.0 to 1.0 can be rescaled during optimization, formulaically 
expressed as 1/βi. 
 

 

 

Figure 1 - 1-Dimensional Logistic 

Function 
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2.3.2 Applicability to the Event Probability Models 

The RaDA team uses logistical regression modeling to develop the Probability of Ignition given Outage Model, 

p(i|o), to predict the binary probability of whether an ignition event has occurred as the result of an electrical 

equipment asset failure or outage event. The model is trained with a data set of historical outage events for 

which includes a binary indicator of whether an ignition event also occurred. The outage data is combined 

covariate inputs for weather, fuel, and vegetation conditions as well as the type of failure that initiated the 

outage to construct the predictive model for probability of ignition given an outage. 

2.3.3 Implementation 

The DEPM v4 Probability of Ignition given Outage Model was developed using the scikit-learn machine learning 

framework, written in Python. The details of the modeling process, the model fit, and its predictive performance 

are discussed in Distribution Network Event Probability Models v4 Documentation. 
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3 Model Performance Metrics 
Several performance and feature metrics are used when evaluating risk and event probability models as fit for 

purpose. The following sections provide an overview of the most commonly used model performance and 

feature metrics considered by the RaDA team. 

 

3.1 Model Performance Metrics 

Model performance metrics are used to gain insight into how a model performs on data its algorithm hasn’t 

been exposed to during model development. Typically, an out-of-sample test data set is withheld from the data 

gathered for model training. After fitting a candidate model using a machine learning algorithm, the candidate is 

exercised to generate model predictions for the test data set. The candidate model predictions are compared 

against the actual test data set outcomes to produce performance metrics. The performance metrics commonly 

used by the RaDA team metrics used for evaluating machine learning models are: 

• Receiver Operating Characteristic Area Under the Curve (ROC AUC) 

• Precision-Recall Curves and Average Precision 

• Top 20% Concentration Factor 

The distribution event modeling framework produces probability values. The 

metrics described in the following section support the review of model 

performance across a full range of probability thresholds for determining 

event outcomes without the need to compute performance results at a 

specific probability threshold. 

A Confusion Matrix, as shown in Figure 2, is used to understand model 

performance at a particular probability threshold. The Confusion Matrix 

compares the probabilities predicted by the model to the actual real-world 

outcome on an out-of-sample test data set. The probability decision threshold 

is used to determine whether a model probability value indicates a predicted 

event has occurred or not. Each prediction/test set event pair will fit into one 

of four Confusion Matrix outcome categories: 

Table 1 - Confusion Matrix Outcome Categories 

True Positive Event predicted for an actual event 

True Negative No event predicted when there was no actual event 

False Positive Event predicted when no actual event occurred 

False Negative No event predicted when there was an actual event 

 

The Confusion Matrix definitions are the foundation for understanding the model performance metrics 

described in the following sections. 

 

Figure 2 - Confusion Matrix 
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3.1.1 Receiver Operating Characteristic Area Under the Curve (ROC AUC) 

The Receiver Operating Characteristic Area Under the Curve (ROC 

AUC) measures the tradeoff between capturing True Positives and 

misclassifying False Positives across the range of thresholds for the 

predicted probabilities.  

Figure 3 shows a sample ROC Curve showing the relationship 

between the True Positive Rate, also known as recall, and the False 

Positive Rate, for a given probability decision threshold. For a binary 

classification such as event / no event, rates are calculated as: 

𝑇𝑃𝑅𝑎 =
𝑇𝑃𝑎

(𝑇𝑃𝑎 + 𝐹𝑁𝑎)⁄  

𝐹𝑃𝑅𝑎 =
𝐹𝑃𝑎

(𝐹𝑃𝑎 + 𝑇𝑁𝑎)⁄  

where: 

a Probability decision threshold 

FN False Negative – predicted no event where event occurred 

FP False Positive – predicted event where no event occurred 

FPR False Positive Rate 

TN True Negative – predicted no event where no event occurred 

TP True Positive – predicted event where event occurred 

TPR True Positive Rate, also know as Recall 

 

Notice that the highest probability threshold occurs where the x- and y-axis meet. This portion of the chart 

shows the TPR and FPR for the highest probability values since only the highest probability values exceed that 

threshold. 

Figure 4 shows the relationship between ROC and AUC. A ROC that 

renders as straight diagonal line has an area under the curve, or 

AUC, of 0.5 and indicates that a model algorithm cannot 

differentiate between events and non-events across all probability 

thresholds. In other words, the model performance is no better than 

random guessing. An ROC curve above the diagonal indicates that a 

model performs better than random guessing. The steeper the 

vertical start of the and the flatter the horizontal end of the ROC 

curve, the higher the AUC and the better a model is at predicting 

true positives while minimizing false positives for the highest 

probability thresholds.  

 

Figure 4 - Example ROC AUC 

Figure 3 - Example ROC Curve 
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3.1.2 Precision-Recall Curves and Average Precision 

The training data sets for equipment asset event probability models are highly imbalanced, meaning that there 

are very few event occurrences against a very large number of non-events. Such an imbalance will often lead to 

an ROC curve that gives too much credit for True Negatives, where an event did not occur and the proposed 

algorithm predicts no event. True Negatives represent the overwhelming majority of predictions for the event 

probability models, so it is important to consider the underrepresentation of False Negatives where an event 

occurred and the proposed algorithm predicts no event. Precision-Recall curves can provide insight into missed 

event underrepresentation. 

Precision-Recall curves measure the tradeoff between converting False Negatives into True Positives at the 

expense of increasing False Positives. Precision and Recall are calculated across the same range of probability 

thresholds used to produce the ROC curve (Figure 3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎 =
𝑇𝑃𝑎

(𝑇𝑃𝑎 + 𝐹𝑃𝑎)⁄  

𝑅𝑒𝑐𝑎𝑙𝑙𝑎 =
𝑇𝑃𝑎

(𝑇𝑃𝑎 + 𝐹𝑁𝑎)⁄  

where: 

a Probability decision threshold 

FN False Negative – predicted no event where event occurred 

FP False Positive – predicted event where no event occurred 

TN True Negative – predicted no event where no event occurred 

TP True Positive – predicted event where event occurred 

Precision Fraction of True Positives against positive predictions, true or false 

Recall Fraction of True Positives against all positives, also known as True Positive Rate 

 

 

Figure 5 presents a typical Precision-Recall curve. In this chart, to 

achieve 20% Recall (also known as True Positive Rate, Precision is 

reduced to 3.8%. Note that as Precision increases to account for more 

True Positive results, the Recall declines as the number of False Positive 

results increases. Therefore, a model that produces the steepest initial 

downward slope of preferable.  

Average precision summarizes the precision-recall curve by calculating 

the weighted average precision across the entire range of probability 

prediction thresholds. The weight is the increase in recall from the 

previous threshold. This value is not interpolated or calculated using 

the trapezoidal rule with the Area Under the Precision Recall Curve, 

which can be overly optimistic. It is computed using the Average 

Precision Score method from scikit-learn, a Python machine-learning 

library. 

 

Figure 5 - Example Precision-Recall Curve 
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3.1.3 20% Concentration Factor 

Ultimately, the Distribution Event Probability Models, in conjunction with the Wildfire Consequence Model, are 

used to prioritize future wildfire mitigation work. Wildfire mitigation work planning tends to consider only the 

riskiest top 20% of all potential locations on the distribution grid. Therefore, a useful metric for understanding 

how a model will influence mitigation spend efficiency is to consider a 20% Concentration Factor, which 

measures how many actual distribution event locations are found in the top 20% of modeled locations when 

ranked in descending order of predicted event probabilities. 

The Concentration Factor is calculated from: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐸𝑣𝑒𝑛𝑡𝑠𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑣𝑒𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙⁄

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑅𝑎𝑛𝑘𝑒𝑑 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙⁄
 

where: 

20% Conc. Factor Model concentration factor for top 20% of ranked locations. 

EventsActual Number of events that occurred within the ranked list of locations 

EventsTotal Number of total actual events 

LocationsRanked Number of modeled locations considered in order of descending predicted event probability 

LocationsTotal Total number of modeled locations 

 

The 20% Concentration Factor provides insight into the effectiveness 

of mitigating risk for the highest priority locations or assets. The 

higher the concentration factor, the more likely that addressing the 

highest priority locations will truly address locations of significant 

risk. Figure 6 provides an example where the top 20% of asset 

locations by ranked probability include the locations of 71% of all 

historical events, which equates to a very good concentration factor 

of 3.55. Therefore, it is likely that mitigation work to the top ranked 

locations will be very effective in reducing future events. On the 

other hand, a poor concentration factor closer to 1 would indicate 

that a model is only slightly better than a coin toss, and that other 

factors beyond model-ranked locations should be considered before 

performing mitigation work. Additionally, a model with a poor 

concentration factor is an obvious candidate for further model 

development. 

 

  

Figure 6 - Example 20% Concentration Factor 
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3.2 Feature Metrics 

Features metrics provide insight into how helpful and influential the inputs are to a model algorithm. The 

metrics described in the following sections are used to help explain how a machine learning model is influenced 

by its covariates and hence why it predicts a particular set of probability results. 

The most common feature metrics commonly used the RaDA team for evaluating machine learning models are: 

• Feature Importance 

• SHAP Plots 

 

3.2.1 Feature Importance 

A popular metric for evaluating a proposed machine learning model is to examine the relative importance of 

each input feature to the model output. Two types of feature importance are used for event probability 

development: permutation importance, use for MaxEnt based models, and total gain feature importance, used 

for XGBoost based equipment asset models. 

Permutation importance for MaxEnt models is determined by sequentially replacing the historical data for each 

feature with randomly scrambled data and observing the subsequent difference in model performance. 

Total gain feature importance is a part of the XGBoost 

algorithm library. The metric represents the cumulative 

performance gain across all the tree splits where that 

feature is used. 

Figure 7 shows a typical feature importance chart for a 

model developed using eight features. The chart displays 

the features in order of importance to a model from 

most to least important. Additionally, the length of the 

bar for a feature represents its relative importance for 

the model when compared with the other features. 

 

 

 

  

Figure 7 - Example Feature Importance Chart 
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3.2.2 SHAP Plots 

The SHAP plot provides insight into the contribution of each feature to the performance of a model. The plot is 

based on individual data points in contrary to the total gains feature importance typically used for model feature 

evaluation. The SHAP plot provides local interpretability by disaggregating by individual data points and shows 

the contributions of each feature across different observations. In addition, the plot provides intuition about 

whether a feature has a generally positive or negative correlation with predict values. 

SHAP values originate from cooperative game theory. The methodology aims to allocate optimal credit to each 

feature (emphasis on “cooperative”) and make explanations local (so each test case/row can be explained). Not 

only does each test case have its own SHAP values, but the values across test cases are additive allowing for 

both individual and group evaluation of the test dataset. 

An example of a SHAP plot is shown in Figure 8. The SHAP 

Beeswarm plot uses the local and additive nature of the SHAP 

values to provide three dimensions of insight to model inputs:  

• The plot y-axis is similar to other feature importance bar 

charts and ranks features from the most important to least 

important. The feature order is selected according to the 

mean absolute value of the SHAP values for each feature. 

This order emphasizes broad impact and can undervalue 

rare but high magnitude impacts.  

• The x-axis shows each SHAP value with a dot for each data 

set row. The dots aggregate along each feature row to 

show density, indicating when many rows have similar 

SHAP values, providing insight to a features SHAP values 

distribution.  

• Color is used to display the relative original value of a 

feature, with higher values in red and lower values in blue. 

The color dimension gives insight into whether high or low 

values are associated with higher probability outcomes, 

providing a useful check on whether the model algorithm 

is using feature values as expected. 

 

 

  

Figure 8 - Example SHAP Plot 

WMP-Discovery2026-2028_DR_OEIS_002-Q013Atch01



16 
 

Internal  

4 Model Results Methodologies 
The RaDA team probability, consequence, and risk models have been developed to support risk mitigation work 

prioritization and planning. Frequently, work planning teams need the RaDA model data results to be 

transformed to match with a particular mitigation program’s planning requirements. The RaDA team has 

developed the following model result transform methodologies in support of mitigation program requirements: 

• System Hardening Circuit Segments 

• Model Results Aggregation 

• Model Results Compositing 

The following sections provide overviews of each of the three transform methodologies and their application to 

RaDA probability, consequence, and risk model results. 

 

4.1 System Hardening Circuit Segments 

Circuit Segments are an artificial risk mitigation work planning construct applied to the distribution grid. 

A circuit on the distribution grid is the set of electrical grid assets downstream of a substation circuit breaker. 

However, an electrical circuit is often too large for planning and performing risk mitigation work. Therefore, the 

System Hardening/Undergrounding wildfire mitigation planning teams have chosen to organize their work by 

Circuit Segments. 

4.1.1 Circuit Segment Definition 

A Circuit Segment is the section, or segment, of a circuit 

and all its connected assets downstream of its closest 

recloser, or Dynamic Protective Device (DPD). Multiple 

reclosers on a circuit divide the circuit into various 

smaller segments such that a fault within any segment 

will only disrupt power to itself and any downstream 

segments. An example circuit broken into four Circuit 

Segments by three DPDs is shown in Figure 9.   

There is one significant nuance when defining a work planning Circuit Segment. Some DPDs have switching 

capabilities that can alter the effective segment configuration during operation. For planning purposes, Circuit 

Segment configuration is set to match default, or as designed, switch positioning. 

4.1.2 Circuit Segment Identification 

Circuit Segments are an artificial work planning construct. Each Circuit Segment is identified through logical 

inspection of the Electrical Distribution GIS (EDGIS) datasets. 

4.1.2.1 Circuit Segment Configuration Source Data 

The work planning Circuit Segments are determined using grid asset data from three sources: 

• Circuit Breaker EDGIS 

• DPD EDGIS 

• EDGIS Circuit Trace Table 

Figure 9 - Circuit Segmentation for Work Planning 
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The electrical grid is constantly changing due to maintenance, risk mitigation, and newly installed services. 

Therefore, it is necessary to use data that is sourced at a specific point in time to minimize configuration 

mismatches. Snapshot of all three datasets for defining the Circuit Segments are archived by RaDA on the 

first of each month along with other source datasets necessary for developing risk models. When RaDA 

begins development on a new set or risk models, all source datasets are synchronized to a common 

snapshot of data. 

4.1.2.2 Protective Device List 

As Circuit Segments are an artificial work planning construct, it is necessary to determine from available GIS 

datasets which electrical assets serve as segment defining protective devices. For System Hardening, this 

includes Circuit Breakers and DPDs that meet the following criteria: 

• Circuit Breakers 

• Substation full circuit breakers 

• Default position configuration, if applicable 

• Parameter: subtypecd = “Source” 

• Parameter: enabled = “True” 

• DPDs 

• Default position configuration 

• Parameter: subtypcd = “Recloser” 

• Parameter: status = “In Service” 

For Circuit Breakers and DPDs that include configuration switching functionality, additional logic is applied to 

include only devices with default, as designed, switch settings.  

4.1.2.3 Circuit Segment Protected Asset Identification 

For every protective device that serves to identify a Circuit Segment, there is a set of electrical assets that 

the protective device safeguards. The EDGIS Circuit Trace Table is used to cross-reference each Circuit 

Segment with its protected assets using the global ID of its protective circuit breaker or DPD. 

The Trace Table contains millions of relationships that define the distribution grid configuration. The 

relationships are inspected to determine the global ID of the closest upstream protective device, and hence 

the containing Circuit Segment, for each electrical asset on the grid. 

Unfortunately, due to clerical errors or differences in update frequencies of the EDGIS tables, a very small 

percentage of assets cannot be mapped to a circuit breaker or DPD in the protective device list. These 

leftover assets are assigned to an “Unknown” Circuit Segment so that their risk can be accounted for during 

the modeling process and to facilitate investigation of GIS errors. 
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4.1.2.4 Circuit Segment Name Assignments 

Circuit Segment names are created by combining 

the circuit name and the protective device 

operating number for a segment. Figure 10 

provides several examples of Circuit Segment 

naming for circuit “El Dorado PH 2101”. The 

following table illustrates how the circuit name 

and device operating numbers from Figure 10  are 

combined to form unique circuit segment names: 

 

Circuit: El Dorado PH 2101 
Operating Number Device Type Circuit Segment Name 

CB Circuit Breaker El Dorado PH 2101CB 

19612 DPD El Dorado PH 210119612 

6582 DPD El Dorado PH 21016582 

52456 DPD El Dorado PH 210152456 

 

It is important to remember that Circuit Segment names reflect a fixed point in time. The grid is continuously 

evolving for reasons such as adding new services, inserting new protective devices for PSPS or EPSS, 

undergrounding portions of circuits, and replacing or removing circuit sections. Each time the grid 

configuration changes, one or more Circuit Segments may see a change in name, length, or protected assets. 

This is the primary reason why the RaDA risk modelling work is always anchored to a set of EDGIS datasets 

captured at a common date to ensure that mapping of risk results is consistent.  

4.1.2.5 Circuit Segment Geometries 

Multiple user requirements for the RaDA risk model results are satisfied through analysis of the Circuit 

Segment geometries. Circuit Segment shape geometries are determined via the cross-referenced protected 

primary and secondary conductor records from the EDGIS Circuit Trace Table. The geometry of each Circuit 

Segment protected conductor section is merged to create the total geometry.  

The Circuit Segment geometries are required to satisfy two significant user requirements:  

• Display risk model results on maps in Foundry as well as other systems such as ArcGIS. 

• Determine Circuit Segment lengths in defined areas such as: 

o HFRA 

o HFTD 

o HFTD Tier 2 

o HFTD Tier 3 

o HH Zone 1 

o County 

o Region 

Note that location of non-conductor assets, which have point locations rather than geometries, are not 

merged into the Circuit Segment shape geometry. 

  

Table 2 - Example Circuit Segment Names 

Figure 10 - Circuit Segment Naming 
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4.1.3 Circuit Segment Use for Risk Models 

As required by the System Hardening and Undergrounding risk mitigation work planning teams, model results 

from the Distributions Event Probability Models, the Wildfire Consequence Model, and the Wildfire Distribution 

Risk Model are aggregated to Circuit Segments. Work planners consider the relative aggregated values for 

probability of ignition, wildfire consequence, and wildfire risk to prioritize the timing, type, and amount of risk 

mitigation work that will be performed on high-risk Circuit Segments, especially in high fire risk areas. 

Aggregation and compositing of risk model results to Circuit Segments are described in Sections 4.2 and 4.3 of 

this document. 

4.1.4 Circuit Segment Vintage Warning 

The GIS datasets used to create a set of distribution Circuit Segments are constantly changing to reflect the 

current physical state of the grid. While it is possible to continuously update the Circuit Segments as the 

underlying GIS datasets are updated, this is not useful from a risk modeling perspective. Therefore, any risk 

model produced by the RaDA team will have a GIS vintage date associated with it. The GIS vintage date for a risk 

model is recorded as part of its provenance metadata. Users are advised to check and consider the Circuit 

Segment vintage date when trying to compare or merge risk model results with Circuit Segment based datasets 

produced outside of the RaDA team.  
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4.2 Model Results Aggregation 

4.2.1 Introduction 

RaDA produces both asset and spatial models. Asset models produce results that estimate event probabilities or 

risk for individual assets at point locations. Spatial, or grid pixel, models, product results that estimate event 

probabilities or risk within 100m by 100m square pixels that form a grid over the distribution and transmission 

service territories. 

Many end users need to understand model results in a larger context than the direct model outputs. The most 

used context is Circuit Segment based values. Other contexts that have been requested include county and 

regional based values. Providing these values requires that the asset and spatial model results be aggregated to 

the desired context.  

4.2.2 Circuit Segment Line Geometry Aggregation 

A common user requirement is aggregating model results to a line geometry. While there are several 

permutations of line geometry possible for the electric grid, the only aggregation currently supported by the 

RaDA team is the System Hardening Circuit Segment. The aggregated model result for a Circuit Segment is the 

sum of two components, grid pixel model result values aggregation and asset model result values aggregation. 

4.2.2.1 Grid Pixel Aggregation 

Many of the RaDA risk models produce results for 100m by 100m grid pixels 

that overlay our service territory. Pixel model results are aggregated to line 

geometries like Circuit Segments by summing the model result value for each 

grid pixel that intersects spatially with the Circuit Segment geometry. Figure 

11 presents a single Circuit Segment that intersects with 14 grid pixels. The 

aggregated model result value for the Circuit Segment is the simple sum of all 

intersecting pixel values. 

CS Aggregated Pixel Value = A5 + A6 + B1 + … + I7 + J8 

 

Aggregating model results is a bit more complicated when multiple Circuit 

Segments intersect with one or more shared pixels as shown in Figure 12. If 

the same model result value is summed to both Circuit Segments, then you 

end up with more summed total Circuit Segment result values then is 

modeled for the entire grid. In other words, the sum of all Circuit Segment 

results would be greater than the sum of all pixel results. 

The model results aggregation is modified for shared pixels by dividing the 

model result for each shared pixel by the number of Circuit Segments that 

intersect it. 

Blue CS Aggregated Pixel Value = A5 + … + F6/2 + …  + J8 

Orange CS Aggregated Pixel Value = G1 + … + F6/2 + …  + E10 

 

Figure 11 - Single Circuit 

Segment Pixel Aggregation 

Figure 12 - Multi-Circuit 

Segment Pixel Aggregation 
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4.2.2.2 Asset Value Aggregation 

Several event probability models produce by RaDA produce results by unique assets. Asset model results are 

aggregated to line geometries like Circuit Segments through parent-child relationships between assets kept 

in various system of record databases. Most assets relationships can be established using the EDGIS Circuit 

Trace Table. Unfortunately, support structure assets are not included in the Circuit Trace Table and their 

relationship to other assets must be inferred through multiple data sources. 

4.2.2.2.1  EDGIS Circuit Trace Table Assets Assignment to Circuit Segments 

The EDGIS Circuit Trace Table, which is used to identify and name Circuit 

Segments, also serves to relationally identify most electrical assets that are 

associated with a Circuit Segment. This includes: 

• Capacitor Banks 

• Dynamic Protection Devices (DPDs) 

• Fuses 

• Switches 

• Transformers 

• Voltage Regulators 

Unfortunately, Support Structures, which are not energized assets, are not included in the trace table. 

Figure 13 presents two Circuit Segments showing both their assigned pixels and assets. 

4.2.2.2.2 Support Structure Assignment to Circuit Segments 

Support Structures, or poles, require specialized logic to determine their owning Circuit Segment(s). As 

noted in the prior section, Support Structures are not recorded in the EDGIS Circuit Trace Table as they 

are not energized assets. Currently, there is no comprehensive single data source that definitively 

relates Support Structures with Circuit Segments.  

Support Structures to Circuit Segment(s) relationships are established through a cascaded search of two 

datasets in the following order of preference: 

1. RaDA’s Manual Assignment Dataset 

2. Asset Knowledge Management (AKM) Pole to Conductor Dataset 

4.2.2.2.2.1 RaDA Manual Assignments 

There is a known issue with the AKM Pole to Conductor dataset for assets near electrical stitch points 

and circuit breakers where there are sometimes too many conductors, and by association circuit 

segments, assigned to a single support structure. For cases where there are four or more circuit 

segments linked to a support structure, the RaDA team manually use the EDGIS Web Viewer to review 

conductor connections and create a custom support structure to circuit segment lookup dataset. 

Figure 13 - Circuit Segment 

Assigned Assets 
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Figure 14 provides an example of the potential need for a manual 

assignment. The magenta dots represent support structures where there is 

the potential for as many as four Circuit Segment that could be assigned to 

each of the poles. The RaDA Manual Assignment Dataset would be used to 

determine the Circuit Segment and Support Structure relationships. 

 

 

 

4.2.2.2.2.2 Asset Knowledge Management (AKM) Pole to Conductor Dataset 

The AKM team maintains a dataset that is the most reliable source for understanding relationships link 

between distribution support structures and conductors. The AKM team actively works to maintain and 

enhance the dataset. The AKM dataset is used for establishing nearly all of the conductor to support 

structure relationships with the few exceptions originating from the RaDA Manual Assignments dataset 

described in the prior section. The AKM dataset is snapshotted monthly to support synchronization of 

model data for development. 

4.2.2.2.3 Asset Model Result Aggregation to Support Structures 

The following assets have one-to-one relationships with Circuit Segments: 

• Capacitor Banks 

• Dynamic Protection Devices (DPDs) 

• Fuses 

• Switches 

• Transformers 

• Voltage Regulators 

The risk results for these assets list above can be directly attributed to a 

Circuit Segment. Figure 15 shows two circuit segments and their directly associated assets for 

aggregation. 

4.2.2.2.4 Support Structure Result Aggregation to Circuit Segments  

Support Structure and Primary Conductor risk results are attributed 

to specific poles. Many poles are associated with multiple Circuit 

Segment. Pole-based risk results are therefore apportioned equally 

to associated Circuit Segment depending on the number of 

connected Circuit Segments. Figure 16 presents three Circuit 

Segments with a few shared poles. Their risk results would be 

assigned and summed as follows: 

• Blue CS = 1/3 Red + 1/2 Magenta + 3 Blue 

• Green CS = 1/3 Red + 1/2 Magenta + 2 Green 

• Brown CS = 1/3 Red + 3 Brown 

 

Figure 14 - Circuit Segment 

Support Structure Assignments 

Figure 15 - Direct Asset Risk 

Aggregation to Circuit Segment 

Figure 16 - Pole-based Asset Risk 

Aggregation to Circuit Segment 
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4.3 Model Results Compositing 

The ultimate purpose for the RaDA risk models is to inform the prioritization of risk mitigation programs. The 

event probability model risk results can be flexibly composited to provide probability values, risk values, and 

priority rankings for specific mitigation programs. Using composited results, programs can prioritize mitigation 

of the highest total risks while using the contributing event probability models to understand the best mediation 

approach to handle the specific components of risk. 

Risk can be composited for any combination of event probability models. Mitigation planners and Subject 

Matter Experts can focus on the drivers of risk for which they are responsible with confidence that their 

composited view is relevant to their work planning needs. 

 

4.3.1 Compositing Methodology 

An event probability model produces, by asset or pixel, a probability of ignition. Combining a probability of 

ignition with its consequence produces the wildfire risk. Probability of ignition and risk results can be 

composited to create total probability of ignition and total risk values. Compositing methodology has evolved as 

the distribution event probability models have matured and improved. 

In producing the WDRM v3, all event probability model results were composited on a pixel basis and equipment 

asset results were spatially assigned to circuit segments. Unfortunately, a significant number of pixels contain 

multiple circuit segments. As risk results were attributed to a pixel, v3 compositing lacked a methodology for 

attributing asset risk at a pixel level proportionally to a specific circuit segment. Therefore, pixel risk would be 

divided equally between all circuit segments that crossed through a pixel.  

For WDRM v4, most of the equipment asset models produce results on an individual asset basis and each asset’s 

relationship with a containing circuit segment is traced through various GIS and SAP data sets. Therefore, 

equipment asset risk can be attributed directly to a circuit segment, eliminating the shared risk approach 

necessary for pixel-based results using for v3. 

The compositing methodology used by the RaDA team in support of the WDRM is currently a three-step process: 

1. Composite pixel model results 

2. Composite equipment asset model results 

3. Aggregation of pixel and asset composite values 
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4.3.1.1 Compositing Pixel Model Results 

Models that produce pixel results are typically spatially 

oriented in the context of the risk than threatens the electrical 

grid network. Figure 17 depicts a single pixel with multiple 

potential spatial threats. Individual event probability models 

for vegetation, animals, and third-party events have produced 

high, medium, and low risk results, respectively for this 

particular pixel. Mitigation programs are typically interested in 

comparing the total risk for the circuit segment that passes 

through this pixel relative to other circuit segments where 

work might be performed.  

Pixel model results are very straightforward to composite, this 

risk values from each of the contributing pixel models are 

simply summed to determine the composite risk for a pixel: 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑅𝑖𝑠𝑘𝑝𝑖𝑥𝑒𝑙 = ∑ 𝑃𝑖𝑥𝑒𝑙 𝑀𝑜𝑑𝑒𝑙 𝑅𝑖𝑠𝑘

𝑛

1

 

Figure 18 presents the composited risk value for the example 

pixel. For this example, a high vegetation risk result and a 

significant animal risk combine to produce a relatively high 

overall pixel model risk result for any circuit segment that 

passes through the pixel. 

 

 

  

Figure 17 - Pixel Model Layers 

Figure 18 - Composited Pixel Result 
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4.3.1.2 Compositing Equipment Asset Model Results 

Equipment asset models produce risk results that are 

specific to individual assets. Figure 19 depicts a very 

simple example of a circuit segment. Even simplified, 

there are multiple modeled assets represented, including: 

• Two support structures 

• Two primary conductor spans 

• Three attached transformers 

Risk results are generated by the appropriate equipment 

asset model for each piece of equipment. Figure 20 

displays visually the risk results for each of the individual 

assets that make up the simple circuit segment. Note that 

the two support structures, the two conductor spans, and 

three transformers each have different levels of risk 

assigned to them.  

The overwhelming majority of equipment assets are pole 

based. Therefore, equipment assets are composited to the 

support structure that holds the asset. Conductor spans 

are a special case in that they are supported by two poles, 

and hence, their risk must be distributed equally to their 

support structures. 

Figure 21 depicts the compositing of equipment asset risk 

to the containing support structures. The composite risk 

indicator at the base of each support structure combines 

the risk for the pole, the equipment attached to the pole, 

and half of the conductor risk. Note that any pole with a 

significant number of attached equipment assets is likely 

to have a relatively high composite risk simply due to the 

number of assets. 

 

  

Figure 19 - Simplified Equipment Asset Example 

Figure 20 - Individual Equipment Asset Risk Results 

Figure 21 - Composited Asset Risk Example 
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4.3.1.3 Aggregation of Pixel and Asset Composite Results 

Composite pixel and equipment asset results are typically aggregated to the context of circuit segment risk 

values for mitigation work planning. 

Figure 22 depicts a single circuit segment that spans multiple grid pixel areas and has several equipment 

assets. The aggregated risk value for this segment is the combined sum of three composite pixel risk values 

and four composite asset risk values.  

 

 

Figure 22 - Single Circuit Segment Aggregated Composite Example 
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The electrical grid network, however, is more complicated than the example present above. Sometimes, a 

support structure supports conductors for more than one circuit segment. Another common configuration 

issue is when multiple circuit segments pass through the same grid pixel. In these cases, some the 

aggregation must distribute the shared risk. Figure 23 presents a configuration where two of the grid pixels 

are spanned by two distinct circuit segments. In this case, while asset risk can be directly attributed to its 

containing circuit segment, the grid pixel risk must be equally shared by the two segments. 

 

  

Figure 23 - Multiple Circuit Segment Aggregated Composite Example 
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4.3.1.4 WDRM v3 and v4 Circuit Segment Composite Aggregation Comparison 

The aggregation of composited risk is a major 

difference between WDRM v3 and v4, and the 

updated aggregation results in more accurate relative 

circuit segment risk scores for v4. The single pixel 

circuit segment configuration provided in Figure 24 

will be used to illustrate the difference between v3 

and v4 circuit segment risk values. Note that a set of 

example risk values have been associated with the 

icon colors in the figure. 

For v3, all event probability model risk results were recorded as pixel values. For the sake of brevity, the 

asset composite results presented in Figure 24 will be assumed to be pixel level results. For v3, a composited 

pixel risk value was calculated and distributed equally to the two circuit segments that cross the pixel as 

shown in Figure 25. In the v3 

example, each circuit segment was 

assigned a risk value of 4.5 and the 

two circuits would have been 

considered to be of equal priority 

for mitigation work. 

In contrast, for v4 the equipment asset risks are directly assigned to their containing circuit segments and 

only pixel model risk is shared equally between the two circuit segments. Figure 26 illustrates that the direct 

assignment of asset risk results in different circuit segment risk values, and hence, very different priorities 

for receiving potential mitigation work. 

This result makes sense, as one segment 

has an asset with considerably greater 

wildfire risk than the other. 

 

  

Figure 24 - v3/v4 Circuit Segment Risks Example 

Figure 25 - WDRM v3 Circuit Segment Pixel Risk Assignment 

Figure 26 - WDRM v4 Circuit Segment Asset & Pixel Risk Assignment 
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4.3.2 Mitigation Work Composites 

The number of event probability event models has grown with each new 

version of the WDRM to provide better causal modeling and 

interpretation of wildfire risk. An All model risk composite, depicted in 

Figure 27, is built for each WDRM version that combines the entire suite 

all equipment asset and pixel model event probability risk results into a 

total composite risk result for each circuit segment. 

 

 The All composite, however, is usually of interest only to the RaDA team 

for model calibration and quality control. Most mitigation program work 

planners are interested in only a partial set of event probability model risk 

results that quantify only the risks that can be addressed by a specific 

program.  

 

Custom composites are configured so that the total risk for only the 

applicable event probability models gets considered as part of the work 

planning and prioritization process. Figure 28 illustrates how model 

selection can be used to configure a composite of selected event 

probability models for a specific work plan. In the example, only a sub-set 

of the available equipment asset and pixel model risk results are relevant 

to the mitigation work program. 

 

 

 

 

 

 

 

  

Figure 27 - All Model Composite 

Figure 28 - Mitigation Work Planning 

Composite 
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4.3.3 Ignition-Weighted Consequence 

The compositing of asset and pixel model results for WDRM v4 revealed that the relationship between 

aggregated wildfire risk, consequence, and probability of ignition is not straightforward. Simply multiplying an 

aggregated probability of ignition with an aggregated consequence value will not produce a correct aggregated 

risk value. To address this issue, it is necessary to back-calculate an aggregated consequence value from 

aggregations of probability of ignition and wildfire risk. The back-calculated consequence is called the Ignition-

Weighted Consequence. 

The example circuit segments shown in Figure 29 will be used to explain how an Ignition-Weighted Consequence 

value is calculated and why it is necessary for aggregated composites. Note that the only difference in the two 

circuit segments is the pixel location of the center support structure and its associated assets. 

 

The box in the center of the example diagram provides color-coded numeric values for p(i) and wildfire 

consequence to be used for determining circuit segment risk and ignition-weighted consequence values. 

A key understanding for the example is that both circuit segments 

have identical aggregated p(i) values and the same average 

consequence value, as shown by the calculations in Figure 30. 

Wildfire risk is defined as a p(i) value multiplied by a consequence 

value. However, an aggregated composite circuit segment risk value 

cannot be directly determined by multiplying the aggregated p(i) 

and the average circuit segment wildfire consequence. Aggregated 

composite risk must consider the location of the modeled assets to 

produce the correct aggregated risk value. 

 

 

Consider the sample circuit segment where the center support 

structure is located in the left-hand grid pixel (Figure 31). For this 

case the aggregated composite risk would be calculated as shown 

in Figure 32. 

 

 

 

Figure 29 - Ignition-Weighted Consequence Explanation Circuit Segments 

Figure 30 - Incorrect Aggregated Composite 

Risk Example 

Figure 31- Example Circuit Segment Configuration 1 

Figure 32- Configuration 1 Aggregated Risk Value 
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Contrast the results for Configuration 1 with Configuration 2, 

where the center support structure is located in the right-hand 

grid pixel (Figure 33). The right-hand grid pixel has a much lower 

consequence value and, as a result, the aggregated composite 

risk value for the circuit segment will be much lower, as 

demonstrated in Figure 34.  

 

 

 

Note that neither of the aggregated composite risk values determined for the example circuit segment 

configurations match the risk value calculated from the summed p(i) and average consequence values presented 

in Figure 30. 

Since the circuit segment asset configuration against the network grid pixel 

locations can strongly influence its aggregated composite risk value, then its 

relative consequence value must also consider the asset locations. This is 

achieved by dividing the aggregated composite risk value by its summed 

probability of ignition to yield an ignition-weighted consequence value. 

Figure 35 provides the ignition-weighted consequence values for the two 

example circuit segment configurations. Note that neither of the ignition-

weighted consequence values match the average pixel consequence value 

presented in Figure 30. 

 

  

Figure 33 - Example Circuit Segment Configuration 2 

Figure 34 - Configuration 2 Aggregated Risk Value 

Figure 35 - Configuration 1 and 2 

Ignition-Weighted Consequence 
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5 Future Plans 
New algorithms and methodologies are developed as needed for new model development and to fulfill new 

user requirements. In response to user requests, potential new developments include: 

• Isolation Zone aggregation and compositing of event probabilities and risk. 

• Support Structure aggregation and compositing of event probabilities and risk. 

• Regional aggregation of event probabilities and risk. 

• Multi-risk optimization for wildfire, PSPS, reliability, and public safety risks. 
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