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1 Technical Model Documentation 
1.1 Purpose 
The Office of Energy Infrastructure (OEIS) requires transparency in risk calculation methodologies 
supporting Wildfire Mitigation. Per the guidelines, OEIS has specific requirements for technical 
documentation, substantiation, and data governance of the models used in risk calculations for the 
WMP. This template outlines the required technical documentation and substantiation for the models.   

1.2 Applicability 
The applicability of the model documentation and governance applies to models included in the Wildfire 
Mitigation Plan (WMP) filed with the OEIS for San Diego Gas & Electric (SDG&E).   

2 Technical Documentation 
2.1 Problem or Function 
2.1.1 Problem Modeled 
Define the problem modeled for function performed by the program, for example, calculation of fire 
growth, smoke spread, people movement, etc. 

Wildfire Next Generation System for Operations (WiNGS-Ops) is a real-time risk assessment model built 
to evaluate and compare Wildfire and Public Safety Power Shutoff (PSPS) risks at the asset level 
(pole/span) and the sub-circuit/segment level at hourly intervals. The primary purpose of the model is to 
help inform decision makers in real-time about wildfire and PSPS risks, which will guide risk-based de-
energization decisions during risk events. The model outputs used to help guide decision makers are 
understood to represent a range of potential risk of wildfire versus PSPS comparisons. 

2.1.2 Problem Environment 
Describe the total fire problem environment. General block or flow diagrams may be included here. 

Changing weather, events that may cause ignitions, and planned work all need to be evaluated to 
determine the risk of ignition and/or the need for a PSPS de-energization. To make the best operational 
decisions regarding work and to make decisions to de-energize, real-time information on what is 
happening in the service territory, especially in the High Fire Threat District (HFTD), is needed.  

The primary function of WiNGS-Ops is to provide the ability to weigh the quantified risks of a binary 
choice of actions: de-energization or not. To this end, the overall WiNGS-Ops model considers several 
risk components that are comprised of more specific individual sub-models. These components and 
their relations are shown in Figure 1 and are defined below.  

 

https://energysafety.ca.gov/what-we-do/electrical-infrastructure-safety/wildfire-mitigation-and-safety/wildfire-mitigation-plans/
https://energysafety.ca.gov/what-we-do/electrical-infrastructure-safety/wildfire-mitigation-and-safety/wildfire-mitigation-plans/
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Figure 1: WiNGS-Ops Process Flow Diagram 

  

Tier 1: Decision Categories (white boxes in Figure 1): 

• Unplanned Risk Events – The total expected risk of events not including planned de-
energization. 

• Planned Outage – The total expected risk of de-energization. 
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Tier 2: Risk components (turquoise boxes in Figure 1): 

• Wildfire Risk – The expected risk of wildfire reduced by de-energization, which includes direct 
impacts of fire and secondary impacts of outages that occur due to wildfire. 

• Asset Failure Risk – The expected risk of an unplanned asset failure that does not lead to a 
wildfire. This equates to the PSPS risk if the failure is at the sectionalizing device. This includes 
only the impacts of a single asset-based outage that does not cause an ignition. 

• PSPS Risk – The expected risk of de-energization at 100 percent likelihood. 

Tier 3: Model Families (orange boxes in Figure 1): 

• Wildfire Consequence Models – The collection of sub-models required to quantify the 
consequence of a risk event for wildfire. This includes direct fire impacts. 

• Conditional Ignition Likelihood Models – The collection of statistical sub-models used to 
estimate the conditional probability of an ignition given that an asset failure had occurred. 

• Failure Likelihood Models – The collection of statistical sub-models used to estimate the 
probability of an asset failure. 

• Outage Consequence Models – The collection of sub-models required to quantify the 
consequence of a risk event for outages. This includes fire-caused outages. 

• Likelihood – the PSPS risk for WiNGS-Ops comprises only the consequence; the risk event is 
certain for planned outages. Therefore, the likelihood always equals 1. 

Tier 4: Individual Sub-Models (aqua boxes in Figure 1) 

• Multi Attribute Value Framework (MAVF) Conversions – Engineering equations used to 
determine the safety, financial, and reliability consequences of wildfire given outputs from the 
Wildfire Risk Reduction Model (WRRM). 

• WRRM Conditional Impact Model – The computational fire spread model for determining the 
direct impacts of a wildfire (e.g., buildings destroyed, acres burned) originating from a specified 
ignition point location. 

• Span-based ignitions – A statistical model for estimating the likelihood of an ignition given that 
an asset failure at a span has occurred. 

• Pole-based ignitions – A statistical model for estimating the likelihood of an ignition given that 
an asset failure at a pole has occurred. 

• Conductor – A statistical model for estimating the likelihood of conductor failure. 
• Vegetation – A statistical model for estimating the likelihood of asset failure caused by contact 

with vegetation. 
• Balloon – A statistical model for determining the likelihood of asset failure caused by contact 

with balloons. 
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• Animal – A statistical model for determining the likelihood of asset failure caused by contact 
with animals. 

• Vehicle – A statistical model for determining the likelihood of asset failure caused by contact 
with vehicles. 

• Safety (Outage) – Quantification of the safety consequences of an outage given the nature of 
the outage. 

• Reliability (Outage) –Calculation of reliability consequences given an outage duration. 
• Financial (Outage) – Quantification of financial consequences of an outage given the nature of 

the outage and the known characteristics of customers subject to the outage. 

2.1.3 Background Environment 
Include any desirable background information, such as feasibility studies or justification statements. 

To determine whether the benefit of de-energization (PSPS) outweighs the potential public safety risks, 
opposing scenarios are quantified in accordance with the risk assessment framework reported in the 
2021 Risk Assessment Mitigation Phase (RAMP), which uses a MAVF to quantify risk. Risk components 
include the likelihood and consequence of a risk event. The subsequent sections of this document 
primarily report on the methods used to determine the likelihood component through machine learning.  

The consequence component, primarily comprised of WRRM, developed by Technosylva, Inc., is a 
computational dynamics model. The approach of combining machine learning for likelihood modeling 
and computational dynamics for consequence modeling was discussed at length during energy-led risk 
modeling workshops and is common among California Investor-Owned Utilities (IOUs).  

While the machine learning models discussed in this document produce hourly quantities at the asset-
level given weather conditions, they are most useful to emergency operators when aggregated or 
summarized. For example, the PSPS decision flow diagram (Figure 2) summarizes the results of the 
conductor risk portion of WiNGS-Ops into a high-medium-low circuit risk index (CRI) for alignment with 
other risk factors and user digestibility. Likewise, the decision to de-energize often includes a 
consideration of “what-if” scenarios, such as in understanding the risks if wind gusts were to exceed 
forecasts. These operational applications inform the nature and format of WiNGS-Ops outputs.  
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Figure 2: PSPS Decision Framework 
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2.2 Technical Description 
2.2.1 Theoretical and Mathematical Foundations 
Convey a thorough understanding of the theoretical and mathematical foundations, referencing the 
open literature where appropriate. 

The WiNGS-Ops model is comprised of individual sub-models that were developed using multiple 
theoretical and mathematical foundations. This document focuses on the probabilistic models 
developed using data science methods, namely machine learning. This approach applies statistical 
learning to the historic record of outages and ignitions to determine the inputs (“features”) that are 
predictive of future outages and ignitions (Hastie, 2009). For models that use machine learning, 
(Conditional Ignition Likelihood Models and Failure Likelihood Models in WiNGS-Ops) historical data 
serves to create a past record of binary outcomes: when an outage or ignition occurred and when it did 
not. Algorithms correlate features within each outcome in a process called supervised learning, and 
more specifically binary classification. A model is said to be “trained” on the historical data, and then can 
“infer” probabilities given future data, such as with weather forecasts. The model training process is 
discussed in Section 2.4.1 and the inference process is discussed in Section 2.4.2. The limitation of this 
approach is discussed in Section 2.4.3. 

Within the realm of machine learning are a variety of algorithms and approaches. The sub-models in 
WiNGS-Ops leverage both regression and decision-tree-based algorithms. The specific algorithms are 
detailed in Table 1. Additionally, some approaches require discretionary judgement by the modeler to 
select parameters that balance statistical rigor with intuition, while other approaches rely almost 
entirely on the algorithm to detect patterns (Breiman, 2001). When automated algorithms are used, a 
process must be employed to prevent the algorithm from overfitting the model to the historic data, i.e., 
the model detects patterns specific only to the historic data, but the patterns are not generalizable to 
new data unseen by the algorithm. The following section details the theory behind the use of these 
algorithms. 

2.3 Theoretical Foundation 
2.3.1 Phenomenon and Physical Laws (Model Basis) 
Describe the theoretical basis of the phenomenon and the physical laws on which the model is based. 

2.3.1.1 Ensemble Learning, Bootstrap Aggregation, and Gradient Boosting 
A foundational concept in machine learning is ensemble learning, the combining of many weak 
predictors to form an overall better predictor. When paired with predictors that are based on decision 
trees, it enables the relatively simple creation of powerful models that can avoid overfitting. In standard 
decision trees, a tradeoff between bias and variance (overfitting and generalizability) can be achieved by 
modifying the tree structure. The larger and more complex the tree, the more overfitted and less 
generalizable. However, the smaller the tree, the weaker its predictive power. Finally, an ensemble of 
smaller trees can yield strong predictive power while preventing overfitting. 
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Perhaps the most common approach for creating an ensemble of trees is bootstrap aggregation, more 
commonly referred to by the portmanteau “bagging” (Breiman, 1996). This process uses bootstrapping, 
a random statistical resampling method, for building many small decision trees from a subset of data 
and features and then aggregates the predictions from each individual tree. The structure of each tree is 
optimized (in machine learning, this is called hyperparameter tuning) to ensure that the individual trees 
are sufficiently small to avoid overfitting while sufficiently large to have predictive power. This overall 
approach, which is used in WiNGS-Ops, is commonly referred to as a “random forest”. 

Another approach for creating an ensemble of trees is gradient boosting. Like with random forests, it is 
an ensemble learning algorithm which combines multiple learning decision tree models to obtain better 
performance. However, rather than utilizing the random process behind bootstrapping, gradient 
boosting builds decision trees in sequence and uses the error of one iteration to build the next. Each 
iteration uses a regularized learning objective function such that when the trees are combined, 
overfitting can be avoided (Chen, 2016). The implementation of gradient-boosted trees used in WiNGS-
Ops is “XGBoost”, which has been shown to consistently perform better and more efficiently than 
random forests. 

2.3.1.2 Measuring Model Performance with Cross-Validation 
To avoid overfitting in machine learning, the performance of the model cannot be measured on the data 
with which the model was trained. The common method for measuring model performance is cross-
validation, a statistical method of evaluating and comparing learning algorithms by dividing data into two 
segments: one used to learn or train a model and the other used to validate the model (James, 2013). 

When data is limited, resampling techniques can be used to train and test a set of model parameters. 
For example, a process akin to the statistical method of “jackknifing”, leave-one-out cross validation 
(LOOCV), selects one observation from the dataset for testing and the remaining observations for 
training, and this process is repeated until each sample serves as the test sample once. The final model 
performance is estimated as the average of all test scores. Since LOOCV can be very compute-intensive, 
an alternate approach is K-fold cross validation, which divides the data into k number of subsets. Each 
set is used once as a test set, with the remaining unselected sets collectively used for training for each 
iteration.  

There are several metrics for measuring the performance of machine learning models. For binary 
classification, one of the most used metrics is the area under the receiver operating characteristic curve 
(ROC AUC) (Hanley, 1982). The ROC curve is created by plotting a model's True-Positive Rate (TPR) 
versus its False-Positive Rate (FPR) across all possible classification thresholds where TPR and FPR are 
represented on y-axis and x-axis. TPR and FPR are values derived from the confusion matrix generated 
from cross-validation. ROC AUC values vary from 0 and 1; a value of 0.5 resembles a model with random 
outputs. 
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2.3.2 Governing Equations 
Present the governing equations and the mathematical model employed. 

For the purposes of WiNGS-Ops, the terms “risk” and “expected risk” are used interchangeably, and 
their values are calculated as the product of the likelihood of a risk event (LoRE) and consequence of the 
same risk event (CoRE): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 

In the case of ignition likelihood, the probability of ignition (PoI) is calculated by Bayes’ Theorem,1 where 
PoI is the product of the probability of asset failure (PoF) and the conditional probability of ignition given 
a failure (PoIF) (i.e., the probability that an ignition occurs following an asset failure), divided by the 
conditional probability of a failure given an ignition had resulted (PoFI which is approximately equal to 
one): 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹

𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼
 

2.3.3 Independent Review Results  
Provide the results of any independent review of the theoretical basis of the model.  

In 2022 WiNGS-Ops underwent an internal review to determine areas of improvement. The model was 
updated to align with software development best practices by integrating source control, code 
optimization, and a multi-stage production environment. In 2023 a review of the machine-learning 
process will be explored. An independent reviewer has been engaged to begin the process. 

2.4 Mathematical Foundation 
2.4.1 Techniques, Procedures, Algorithms 
Describe the mathematical techniques, procedures, and computational algorithms employed to obtain 
numerical solutions. 

The following subsections explain the techniques, procedures, and algorithms employed to develop 
each of the tiers in Figure 1. 

2.4.1.1 Likelihood Sub-Model Development Process 
The likelihood sub-models are developed by a machine learning process. The general steps to this 
process are shown in Figure 3. Details for each step specific to WiNGS-Ops are described below: 

 
1 The ignition likelihood (PoI) is approximated by the Bayesian relation between the probability of failure (PoF) and conditional 
probability of ignition (PoIF). 
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Figure 3: Machine Learning Process 

 

Data collection  

Machine learning training requires historic data. The likelihood models use historic records of outages 
and ignitions collected by SDG&E for reasons independent of WiNGS-Ops. 

Create labeled set 

From the historic record, a dataset is constructed for each model to be used for model training. The 
training set must match the desired level of granularity of the model output and, in the case of binary 
supervised classification, must also be labeled with a binary field indicating whether the event (outage 
or ignition) had occurred or not. An ideal training set has an equal number of event occurrences and 
non-occurrences.  

For the failure likelihood models, each historic outage since 2015 was mapped to a specific asset and 
hour of the year and subsequently labeled as “event occurred”. The alternate set of samples labeled as 
“event did not occur”, i.e., no outage, could in theory consist of all asset-hours since 2015 that did not 
see an outage. However, this would create considerable imbalance of label classes, which would lead to 
computational and modeling challenges. Therefore, a sample of the non-occurrence set was taken and 
deemed as representative of asset-hours for which outages did not occur. The two sets are appended to 
form the fully labeled training set. 

Feature engineering 

After a labeled dataset is created, features that describe the observable characteristics of the asset-hour 
are joined to the observations. The key features used in the WiNGS-Ops are asset characteristics (e.g., 
wire length, pole material) and weather conditions (e.g., wind gust, temperature). Features can be 
model-specific, such as “road proximity” for the vehicle contact probability model, or derived from 
external sources, such as the public land-use designation around the asset. The engineering of features 
is considered an “art”, requiring creativity, input and feedback from subject matter experts and trial and 
error. The process of feature engineering also includes creating variations of a single feature, 
normalizing or scaling numerical features, imputing missing features, or numerical encoding of 
categorical features.  

After the creation of features, some modeling algorithms require careful selection of features to avoid 
overfitting. For algorithms that are relatively insensitive to a large number of features, selection should 
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still be considered to optimize computing, operational, and latency requirements. In both cases, some 
level of discretion from the modeler is required. 

Algorithmic modeling 

The labeled dataset and features, collectively referred to as the “training set”, is processed through 
statistical algorithms. This process is known as “fitting” the data, or “training” the model. The algorithms 
are typically available for public use in open-source code repositories, such as GitHub. Table 1 shows the 
software versions for the algorithms used to train the failure likelihood sub-models in WiNGS-Ops. 

The algorithms are not entirely a “black box”. As discussed in Section 2.3.1.1, the modeler must tune 
“hyperparameters” to achieve the optimized fit for the select algorithm. This process requires several 
iterations of model training, or the modeler may opt for an automated tuning process, which is a more 
recent advancement in the field of machine learning, and therefore not currently employed in WiNGS-
Ops.  

Model validation 

Each trained model is evaluated on data that is set aside from model training by cross-validation, the 
statistical approach detailed in Section 2.3.1.2. This approach measures the model performance by how 
it would generalize to new data, rather than how it fits to training data, ensuring the models are 
predictive in nature. The candidate model is then accepted or rejected. 

Operational deployment 

After a model is created, evaluated, and accepted, it is deployed in a software environment for use in an 
automated inference pipeline or other software applications. This process has its own cost and technical 
considerations, which creates limitations to model complexity, and sometimes performance, in 
exchange for reliability and robustness. For operational models such as WiNGS-Ops, deployment 
considerations should be considered during early stages of model development. In other words, model 
features that create deployment challenges should be precluded. 

2.4.1.2 Outage Consequence Network Analysis 
To quantify the impacts of a specific outage (planned or unplanned), the customers that would be 
impacted are first identified by analysis of the electrical system. For PSPS, this is simply the collection of 
customers downstream of the sectionalizing supervisory control and data acquisition (SCADA) device. For 
unplanned outages, such as those caused by wind conditions, the customers impacted from a specific 
asset failure are determined by first identifying the upstream sectionalizing device (SCADA or non-
SCADA), and then identifying all customers downstream of that device. This calculation is performed 
daily for every span considered in WiNGS-Ops (the cadence that the electric network is logged to the 
analytical warehouse). 
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For the consequence of an outage caused by a wildfire, the rate-of-spread of the worst-case fire, as 
determined by WRRM, is used to estimate a geometry within which assets are damaged. The network 
analysis is performed for all damaged assets, and all customers that would lose power are identified, 
which could span multiple circuits even though the fire would originate from the failure of one specific 
asset. 

2.4.1.3 References to Techniques and Algorithms 
Provide references to the algorithms and numerical techniques. 

The machine learning sub-models developed using the procedures detailed in Section 2.4.1.1 utilize 
open-source software and frameworks (called “libraries” in Python). Software versions and methods are 
summarized in Table 1. 

Table 1: Machine Learning Sub-Models Development Summary 

Likelihood 
Sub-
Models 

Algorithm Data 
Manipulations 

Feature Selection 
Methodology 

Model Validation Python Library 
(version) 

Conductor 
Failure 

Linear regression 
(log-log) 

Misc Bottom-up p-value n/a Statsmodels (0.13.0) 

Balloon 
Contact 

Logistic 
regression 

Imputation of 
missing land-use 
feature using 
mean value 

Bottom-up p-value n/a Statsmodels (0.13.2) 

Animal 
contact 

Logistic 
regression 

n/a Best judgement n/a Statsmodels (0.13.2) 

Vegetation Logistic 
regression 

Normalization, 
scaling 

Best judgement n/a Statsmodels (0.13.2) 

Vehicle Extreme gradient 
boosted trees 

One-hot 
encoding 

Review of the Feature 
Importance list 

k-fold cross-
validation 

Xgboost (1.5.1) 

Span Ensemble 
decision trees 
(random forest) 

 Gini importance, 
discretionary 

k-fold cross-
validation 

Pycaret (2.3.2) 

Pole Engineering 
equation 

n/a n/a n/a n/a 

 

2.4.2 Equations and Implementation 
Present the mathematical equations in conventional terminology and show how they are implemented in 
the code. 
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The WiNGS-Ops model takes input data from a variety of internal and external data sources. For 
machine learning models, inputs are determined by the feature selection methodology, reported in 
Table 1. Figure 4 details the inputs, outputs, and interdependencies of the data flowing through the 
model. The sub-sections below elaborate on the specific implementations and calculations of this flow 
diagram.     
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Figure 4: WiNGS-Ops Calculation Schematic 
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2.4.2.1 Individual Sub-Model Implementation 
After a machine learning model is trained and saved as described in Section 2.4.1, a separate piece of 
software code (inference pipeline) generates the model output probabilities. This inference pipeline 
connects to all input data sources to generate the features required by each sub-model. Additionally, 
the software should use the same versions of the open-source Python libraries from which the models 
were trained to ensure the model performs as expected.  

The consequence models used in WiNGS-Ops (Wildfire Consequence models and Outage Consequence 
models) that are not developed with machine learning are also implemented as software code in the 
inference pipeline. The equations are “hard-coded” into the software, which is version-controlled for 
auditability. Table 2 summarizes the equations used as of the time of this filing. 

Table 2: WiNGS-Ops Equations 

 Outage Consequence MAVF Conversion of WRRM Conditional Impact Model 

Health and 
Safety 

Customer impact scaling factor  
× 

number of affected customers 
× 

outage duration 
× 

Serious Injuries and Fatalities (SIF) per 
customer-minutes 

structures destroyed × SIF per structure impacted 
+ 

Total acres burned × MAVF Conversion Factor 
 
 
 
 

Reliability SAIDI + SAIFI 
(based on outage duration + assumed 

restoration duration) 

n/a  
(calculated in Outage Consequence column) 

Financial number of affected customers 
× 

dollars per affected customer 

structures impacted × dollars per structure 
+ 

acres impacted × dollars per acre 
+ 

acres impacted × suppression dollars per acre 
 

2.4.2.2 Model Families Aggregation 
After each individual sub-model generates outputs from the data inputs, those values are aggregated to 
the model family tier. For failure likelihood models, since the modeled events are considered 
independent, this is a straight summation of the probable outputs from each model for a given asset.  

For the consequence models, each component (safety, reliability, financial) is combined in accordance 
with the weighting scheme established in RAMP. 
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2.4.2.3 Risk Component Calculations 
For wildfire models, risk components are calculated at the asset level, as shown in the Intermediate 
Outputs in Figure 4. Conversely, the PSPS risk components are calculated at the transformer device 
level. These components are ultimately aggregated to the segment level for comparison. 

To calculate the likelihood of a wildfire event for an asset-hour, the likelihood model families are 
combined using Baye’s Theorem, described in Section 2.3.2. For the likelihood of an asset failure that 
does not lead to a wildfire, the following equation based on the same statistical principles is used: 

� 𝑃𝑃𝑃𝑃𝑃𝑃 
𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�  =  𝑃𝑃𝑃𝑃𝑃𝑃 ×  (1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹) 

This likelihood (and consequence) is considered to ensure that all risks that would be mitigated by PSPS 
are accounted for. In other words, the risk of a planned versus unplanned outage at the same time and 
location are considered equal in WiNGS-Ops. Although a planned outage should amount to less risk in 
practice (e.g., due to customer notification of potential PSPS), these factors are currently not considered 
in WiNGS-Ops.  

While the consequence of an outage is a straightforward mapping to the model family outputs (for both 
PSPS and asset failure), the consequence of wildfire is determined by combining both fire and outage 
consequences. However, in this case, the outage consequence also considers additional customer 
outages that would occur as a result of the wildfire. The process for this determination is explained in 
Section 2.4.1.2. 

The following equation provides a generalization of the aspect risk calculation of the LoRE and CoRE 
components:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 = �(�(𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

𝑛𝑛

𝑗𝑗=0

𝑚𝑚

𝑖𝑖=0

 ) 

Where:  

PoFi = Probability of Failure at pole/span location 
PoIi = Conditional Probability of Ignition (given a Failure has occurred) at each pole/span location 
CoREi = Consequence of risk event at each pole/span location 
i = variable iterating through each pole/span location   
j = variable iterating through each failure sub-model 
m = number of poles/spans per segment 
n = number of failure sub-models 
t = time interval  
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2.4.2.4 Overall Risk Calculus 
For PSPS events, PSPS risk is primarily a function of shut-off duration, which may vary based on weather 
conditions. However, for purposes of comparison, a constant duration that is independent of wind 
conditions is assumed and, unlike wildfire risk, the risk score is assumed to remain constant over wind 
gust variations. LoRE is not considered since this operational model weighs the expected wildfire risk 
against the full consequence of a PSPS de-energization. CoRE is calculated utilizing the MAVF, applying 
the same assumptions used in the WiNGS-Planning model.  

After the Expected Outcome values are calculated for each span and pole downstream of a 
sectionalizing device, a simple regression is performed to acquire an average value for the segments as a 
function of wind speed. With the calculation of PSPS risk and wildfire risk curves as a function of wind 
gust, the intersection of risk scores is computed and evaluated as the wind gust at which the wildfire risk 
surpasses the PSPS risk (see Figure 5). 

Wildfire and PSPS risk curves are evaluated as a range of possible values using bands that account for 
variation of risks within individual spans/poles of a given segment (specifically for wildfire risk), 
uncertainties, and variations in other assumptions, such as those made around PSPS de-energization 
consequence. The range of values for each metric allows decision makers to balance flexible decision-
making with risk-informed situational awareness, thereby adding to a more holistic approach to PSPS 
de-energization decision making capabilities.  

Figure 5 shows wind gust ranges where the expected wildfire risk impact will start to be greater than the 
risk impact of performing a PSPS de-energization on that segment. This helps decide at which ranges of 
wind gusts to consider de-energization of a particular segment. It is important to note that WiNGS-Ops 
outputs are not the sole decision-making points. Other variables and dynamic input from the field are 
also considered. 
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Figure 5: Impact of Wind Gust on Wildfire Risk Impact 

 

 

2.4.3 Limitations (see Guide ASTM E 1895) 
Identified the limitations of the model based on the algorithms and numerical techniques. 

2.4.3.1 Limitations 
Machine learning models are limited by the characteristics of the training data, such as the number of 
risk event observations and the temporal-spatial granularity and range of the data collected. For 
example, if data is collected from only the past few years, then the model results will be biased towards 
patterns observed during those years. Additional data that is used to generate machine learning 
features should ideally match the temporal-spatial range and granularity of the training data, although 
this is not a strict limitation if appropriately managed. This limitation commonly occurs when integrating 
external data. For example, public land use maps used for training some models cover only San Diego 
County. Therefore, the values used for assets located outside of San Diego County must be imputed or 
approximated for some algorithms, typically by using a mean value. 

Another general limitation for machine learning is the computational limitations during both model 
training and inference. While the algorithms described in this document are conceptually simple, they 
often have heavy computational requirements that limit model complexity. For this reason, considerable 
effort has been given to migrate WiNGS-Ops to a cloud-based data science platform, such that 
distributed cloud resources can be leveraged. However, this process also comes with added challenges 
in software and runtime environments, data access and security, and human capital required to navigate 
cloud tools. 
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2.4.3.2 Key Modeling Assumptions 
Assumptions made specific to each model to represent the physical world and to simplify calculations 

For machine learning models: 

• Outages (SAIDIDAT) assumed to be failures 
• Reportable ignitions as totality of outages that have caused ignitions 
• Representativeness of assets and time and sampling of training set 
• Relatively coarse mapping of asset to anemometers is sufficient 
• The mapping of outage or ignition to a specific asset in some cases when this was not recorded 

or could not be determined by field workers. 

For wildfire consequence, WRRM estimates tangible impacts (e.g., structures destroyed, acres burned) 
from which the MAVF core attributes are derived. Therefore, an additional layer of modeling determines 
the MAVF attribute values from WRRM outputs. This step requires several discretionary assumptions 
that are assessed prior to PSPS de-energizations and are typically reported in post-PSPS reports. 

2.4.3.3 Stability of Assumptions 
Stability of assumptions in the program, including historical and projected changes 

As with all machine learning models, as more data is collected, the model outputs will improve. The data 
collection efforts leveraged by WiNGS-Ops are expected to continue and expand, and therefore it can be 
expected that the model performance will improve over time due to both increase amount and quality 
of data. 

2.5 Data Libraries 
Provide background information on the source, contents, and use of data libraries. 

Data used for WiNGS Ops is collected from enterprise resources and centralized in an Amazon Web 
Services (AWS)-based cloud environment. Data sources that are external to the enterprise are brought 
into AWS in raw format and transformed into structured data where necessary. All data in the cloud 
data repository must be structured at this time. Refresh schedule varies based on the source system 
refresh rate. All additional data transformations are done in accordance with machine learning modeling 
best practices to prepare the data for ingestion and prediction. 

Table 3: Data Sources 

Source Collection 
Frequency 

Spatial Granularity Temporal 
Granularity 

Comment 

Asset information 
systems (or EAMP) 

Daily refresh to 
analytics 
databases 

Asset-level n/a  
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Source Collection 
Frequency 

Spatial Granularity Temporal 
Granularity 

Comment 

Weather station data Daily refresh to 
analytics 
databases 

222 weather 
stations 

10 min Historical data used for training 

Weather forecast 
(SDSC) 

Twice a day 2 km Hourly Made publicly available by SDG&E/SDSC 

Public maps 
(SANGIS)* 

Approx. annually Vectorized n/a Public resource; does not include 
Orange County 

SDG&E Fuel layer Approx. annually 9 m raster n/a Generated by Technosylva, Inc. 

Customer 
information systems 

On demand Transformer-level n/a Not currently in cloud (BPP) 

*External data dependencies 

2.5.1 External Dependencies 
The WiNGS-Ops model is dependent on both internal Enterprise data processes with robust 
maintenance protocols and external data sources with varying maintenance procedures. 

Public maps data is provided by the San Diego Geographic Information Source (SanGIS)2.  

2.6 Substantiation (SFPE Guide 2010)] 
For machine learning models, substantiation requires review of both data and code, which occurs during 
several stages of the development and deployment process. During early stages of development, 
verification mainly occurs through a series of ad-hoc analyses, commonly referred to as “exploratory 
data analysis”, where the data scientist develops an understanding of the data and how code interacts 
with the data. The model building stage that follows is where a series of experimental models are 
validated using statistical methods (see Section 2.3.1.2). High-performing models may then be deployed 
to a “production environment”, and the process may include code revisions and/or new data pipelines 
to meet software production requirements. The deployment process therefore includes several 
additional steps of data and code verification. Finally, the resulting model outputs undergo user 
acceptance testing to assure that the deployed model produces the intended results.  

2.6.1 Verification 
Describe efforts to verify the model is working as designed and that the equations are properly being 
solved (e.g., independent review of source code, testing, user training, and certification). 

 
2 https://www.sangis.org/ 



 

WMP Data Governance DOCUMENT SECURITY: 

PUBLIC 

Technical Model Documentation (based on ASTM E 1472) EFFECTIVE DATE: 

4/12/2023 

WiNGS-Ops 

 

 
Technical Model Documentation WiNGS-Ops 20 

Production Code Verification 

In the production environment, each model run is saved with a timestamp and version number. The 
version schema allows for tracking software patches, minor enhancements, and major enhancements. 
Code revisions must undergo a quality control review where the full model is run and tested for 
accuracy and errors before changes are accepted. This method of code verification is adherent to 
software development best practices and ensures that new functionality is reviewed by multiple 
developers before being accepted. 

Data Quality Verification 

Data quality is verified in the model production environment using heuristic checks, such as identifying 
when certain values are beyond an expected range. Additionally, data quality is verified at the source: 

• GIS Electric System data - Data obtained from GIS is digitized internally from As-built drawings 
and undergoes a rigorous series of quality assurance tests prior to being released as official As-
built GIS features. Field quality validation is accepted on an as-needed basis. 

• Outage data - Outage data undergoes an internal audit process by qualified reliability staff to 
verify the details surrounding the outage. The reliability staff obtains outage information from 
the OUA application and verifies the relevant details of the outage (such as root causes, time 
stamps, and customer counts) and its effects using NMS. 

• Ignition data - Ignition data is collected and investigated by qualified fire coordinators. Data 
includes information on fires started by SDG&E electric assets. 

• Weather data - Weather data is collected by real time location system (RTLS) units 
[anemometers and Remote Automated Weather Stations (RAWS)] and coalesced into the OSI Pi 
database. Meteorology maintains relationships between the weather stations and electric 
assets. 

• Vegetation data - Vegetation data is collected and maintained by Vegetation Management, who 
has ongoing maintenance to ensure inspection information is current and correct. 

2.6.2 Validation 
Identify existing data that can be used to validate model performance. Describe how model predictions 
are compared to observations from historical events or experiments. 

Sub models are validated each year, see Table 4 for the sub-model performance validation summary. 

Table 4: Machine Learning Sub-Models Validation Summary  

Model Function Validation 
Method 

SME Performance Metric 

Conductor Failure Wind gust, wind direction, 
conductor type, elevation 

Goodness of fit Electric District 
Operations 

R-squared 
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Model Function Validation 
Method 

SME Performance Metric 

feedback on 
feature selection 

Balloon Contact Time of day, day of week, month, 
land use (population) density 

n/a n/a MSE 

Animal contact Outages, conductor attributes, 
species habitat models, 
vegetation, spatial 

n/a n/a n/a 

Vegetation Number of trees, tree species Cross validation Vegetation 
management 

n/a 

Vehicle Pole location, attributes, road 
attributes, landmarks 

Cross validation Electric District 
Operations 
feedback on 
feature selection 

n/a 

Span Forecasted wind gust, forecasted 
temperature, fuel source 
prevalence, wire type, wire 
length 

Cross validation Fire science 
review, 
Technosylva 
feedback and fuel 
layer 

ROC AUC 

Pole Pole age, pole material, pole 
class, number of wires, upstream 
sectionalizer type, WRRM value 

n/a n/a n/a 

 

WiNGS-Ops model outputs undergo significant review, observation, and scrutiny. Due to its novelty, 
there are no clear methods for validation. However, sensitivity analyses are being conducted and results 
are benchmarked with past decisions to determine areas of improvement and whether the 
quantifications are adequate.  

Figure 6 demonstrates the ongoing analysis of the WiNGS-Ops results. The graphs show data from an 
actual PSPS de-energization where PSPS protocols were activated. The top graph shows weather 
forecast and actual weather data over time, and the bottom graph shows the corresponding wildfire and 
PSPS risk calculations during the same timeframe. Figure 6 suggests that model outputs are responding 
to weather patterns as intended, with a correlation observed between high wind gust and high 
calculated wildfire risk.  
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Figure 6: WiNGS-Ops Analysis 

 

2.6.3 Calibration 
Describe how model inputs and parameters are modified to achieve better agreement for a specific 
scenario. Calibration limits the propagation of error by correcting new data but they have limited 
effectiveness in improving the quality of the forecast. 

A calibration step is required to ensure that the probability of failure model outputs are congruent with 
annual outage rates since only a sampling of “non-event” observations were used in the machine 
learning training set, as discussed in Section 2.4.1.1. The same sampling ratio used to generate the 
training set is used to scale the predicted probabilities (i.e., probabilities are lowered) so that the total 
number of hours in which an outage did not occur within the observation period is considered. When 
the probabilities are summed across all hours in a specified year, the modeled annual outage rate is 
estimated. Since the sampling of “non-event” observations is random and presumed to be 
representative, this process is not expected to introduce any bias; it is performed for computational 
simplicity. 
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