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Executive Summary 
This document describes the Wildfire Distribution Risk Model (WDRM). The WDRM is the primary model that 
PG&E (Pacific Gas and Electric) uses to understand how much wildfire risk is posed by the overhead distribution 
network, where the risk is concentrated, and why the risk exists. The WDRM’s purpose is to inform PG&E’s 
Wildfire Mitigation Plan (WMP) and the work plans developed by mitigation program teams to support PG&E’s 
stand that, “Catastrophic wildfires will stop”.  

The purpose of this document is to describe the development of WDRM v3 (third version) by the Risk and Data 
Analytics (RaDA) team, explain significant model improvements over WDRM v2, and provide a high-level analysis 
of the model results. Asset location and attribute data, risk modeling approaches, modeled risk predictions, and 
mitigation risk reduction predictions will be described in detail.  

The document addresses the following topics, summarized here for convenience: 

The purpose of the WDRM and how is it used 

The WDRM quantifies the risk of wildfire ignited by the overhead distribution grid to support wildfire mitigation 
planning and prioritization. It assesses expected wildfire risk over annual and multi-year timescales, given the 
conditions and assets associated with past grid events, including outages, PSPS damages and hazards, and 
ignitions, from 2015-2021. To support the development of work plans around specific categories of mitigations 
and allow model structures to reflect what is known about specific failure modes, sub-models are trained on 
well-defined non-overlapping categories of grid events – subsets of all events defined by shared cause, sub-
cause, and assets involved. Sub-models are tuned to the asset and environmental attributes expected and 
empirically confirmed to best predict grid events within each subset. Subset-level estimates of ignition 
probability are multiplied by wildfire consequence values derived from simulated location/fuels/conditions-
specific wildfire outcomes calibrated to the satellite record of historical wildfires in California to produce asset- 
and location-specific risk estimates. The resulting risk values can be aggregated across subsets to produce 
“composite risk” estimates that span specific groups of (or all) subsets, capturing total risk while providing 
planners the ability to drill into contributing causes and the assets involved. These results are available to 
planners via interactive maps that overlay grid asset data or via roll-up to circuit segments, the planning units of 
system hardening, defined as the segments of grid infrastructure protected by the same protective device. 

Comparison of the improved version 3 to past models 

The WDRM v2 consisted of two separate models built to support vegetation management and system hardening 
planning, focusing on vegetation-caused and conductor-involved ignitions, respectively and confined to the High 
Fire Threat Districts (HFTD)s. The WDRM v3 expands prediction coverage to the full PG&E distribution system 
and all categories of grid events, including third party, animal, support structures, transformers, vegetation 
caused, and equipment failure for several types of equipment and unifies these models into a single framework 
and set of results – via the sub-models and compositing described above. To maximize the information 
produced by the WDRM and the training data available to sub-models, v3 first trains on and predicts failures 
capable of producing ignitions (e.g. outages) and then estimates the probability of an ignition arising from the 
same cause as the failures in question. This later step is based on the ignitions subset categories of cause, sub-
cause and asset type(s) and local environmental conditions, including vegetation types, fuel dryness, and wind. 
Ignition probability values are then multiplied by estimates of wildfire consequences of ignitions starting at all 
locations with grid assets and available fuels to produce location-specific risk values. The v3 consequence 
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calculations calibrate wildfire simulation outputs against historical outcome data on California wildfires from 
satellite observations and fire agency records. The WDRM v3 also incorporates improved model inputs, including 
Light Detection and Ranging (LiDAR) and satellite derived estimates of fall-in tree count (based on height and 
location), tree species data, improved and corrected ignition data, improved sources of event location data, 
improved tracking of which assets were involved in grid failures, and improved asset attributes, including 
changes over time. The net outcome of all these changes is improved predictive performance, greater coverage 
of events of all types, providing results for the full-service territory, and improved ability to quantify the 
contribution from specific causes, sub-causes, and asset types to overall risks – a feature necessary to plan well 
targeted mitigations. 

WDRM v3 risk calculation, construction, and performance  

The WDRM v3 defines risk as the product of the Likelihood of Risk Event (LoRE) and Consequence of Risk Event 
(CoRE). More precisely, the LoRE is the expected count of ignitions derived from the probability of an ignition of 
a given cause and sub-cause involving specific asset types and the CoRE is the expected consequence of an 
ignition, quantified by calibrated simulations. Risk can be calculated for specific subsets of grid event or 
aggregated across all subsets. If used to rank work locations and compared to work performed without ranking, 
the top 20% of probability of ignition predictions reduce the amount of work necessary to address an (out of 
sample) ignition from the historical data set by a factor of 2-4x, depending on the subset of events in question. 
In other words, the WDRM v3 can specify double to quadruple the risk mitigation for the same effort when 
compared to unranked work. 

Calculation of the possible reduction in risk from mitigation efforts 

The WDRM v3 defines mitigations via efficacy factors that determine the fraction of ignitions that are expected 
to be avoided by their implementation. For example, an efficacy of 0.75 would reduce ignitions by 75% of their 
unmitigated value (i.e. to 25% of the original). These efficacy factors are only applicable to the specific subset(s) 
of grid events they are capable of addressing and are expected to internalize achievable efficacy – for example, 
after accounting for private landowners who refuse to allow their trees to be cut under vegetation management 
efforts. Given efficacy values and the rules that govern their application to specific subsets, ignition probability 
estimates for relevant locations/assets are decreased by the amount dictated by the efficacy values. The 
mitigation effects are computed and applied everywhere to represent the outcome from theoretical maximal 
coverage of mitigation efforts. Planners are then instructed that only the locations where they perform the 
mitigation can be claimed as expected reduction and that multiple mitigation strategies cannot be applied to the 
same locations with additive outcomes. This pre-computation of potential mitigation aids in work planning and 
making tradeoffs between potential mitigation strategies.  

To develop the underlying efficacy factors, RaDA worked with subject matter experts responsible for developing, 
planning, and implementing mitigations to elicit their subset-specific expected efficacy and the conditions under 
which they expect to achieve them. Some efficacy factors are defined directly at the subset level while others 
are aggregated to the subset level based on values provided at based on event- or asset-specific attributes.  

New insights on wildfire risk 

Risk is more strongly influenced by expected consequences than ignition probabilities. This is verified by 
examining the dramatic difference between the outcome of small and large (the vast majority with modest 
consequences each) vs. the destructive and catastrophic (comparatively rare but orders of magnitude more 
consequential) historical fires. By comparison, the range of ignition probability values is more constrained than 
the range of consequences. In addition, ignition probabilities tend not to be highest in locations where wildfire 
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consequence is highest. While this is fortunate for the rate of destructive wildfires it means that reducing the 
risk or occurrence of destructive wildfires may not be accompanied by a commensurate reduction in ignitions. 

The top 20% of probability-ranked locations and assets host 2-4x the count of (out of sample) ignitions, 
depending on the subset in question. All else being equal, this suggests that the same amount of mitigation 
effort can address 2-4x the risk when prioritized vs. unprioritized. 

No data set is perfect, yet event and asset data quality are very important drivers of model fits and 
performance. Hard work improving event cause and sub-cause, locations, and assets involved were all rewarded 
by model performance gains. This reinforces the value of ongoing work on data quality to be done in the future 
– and of models that are robust to uncertainty in outlying data labels and values. 

Different event subsets have both qualitative/quantitative differences in location- or asset-specific based 
failure/ignition probabilities, and those patterns reflect what is understood about the causal processes that lead 
to grid events. For example, vegetation caused ignitions tend toward locations with more dense counts of fall in 
tree events, animal squirrel events are bifurcated between suburban and forest locations, and support structure 
failures are more likely with older equipment. These intuitive outcomes affirm that the machine learning 
methods have tuned their selected features and fit parameters in a manner that are both subset-specific and 
consistent with pre-existing knowledge – attributes that lend credibility to their finer scale and subtle 
predictions as well.  

Ignitions can be predicted using raw outage probabilities but improved by passing outage probabilities through a 
probability of ignition given an outage model. This is because the probability of ignition given an outage model 
can account for subset-specific character of outages (i.e. more or less likely to cause a wire down or to occur 
during fire weather) and locations that experience more ignition conducive to wind, vegetation types, and fuel 
moisture.  

Schedule for future improvements to the WDRM 

Wildfire risk modeling has made marked improvement in the last year both at PG&E and other utilities and 
model developers. Nevertheless, it is still in a rapidly evolving phase. In support of PG&E’s stand that 
catastrophic wildfires shall stop, PG&E will produce annual updates to the WDRM. As part of this continuous 
improvement, the next WDRM, v4 WDRM, is planned for finalization during Q1 of 2023. For this update planned 
improvements include consequence values that account for difficulty of suppression, and factors that influence 
the effectiveness of evacuation in advance of fires. The model will continue to account for PSPS hazards and 
damages as proxies for grid events that would have occurred with the power on and will add the ability to 
account for the effects on EPSS (protective device settings that make them more likely to trigger protective 
outages under fire conditions). Another area of focus is allowing for algorithmic specification of the 
circumstances under which specified mitigations are applicable, leading to a more precise application of 
mitigation effectiveness factors only to the degree to which they can be achieved – for example, the use of less 
combustible transformer fluids will be applicable only to transformers that lack them. Finally, the v4 WDRM will 
be based on 2022 updates to event, asset, weather, and vegetation/fuels data and will benefit from ongoing 
efforts to test out and incorporate new or improved model structures and covariates to improve model 
predictive performance.
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1 Introduction 
1.1 PG&E’s Wildfire Risk Management Ecosystem  

PG&E employs several risk models for Wildfire Risk Management. The models in PG&E’s risk management 
ecosystem include: 

• Planning models 
o Enterprise Risk Model 
o Wildfire Transmission Risk Model (WTRM) 
o Wildfire Distribution Risk Model (WDRM) 

• Operational models for Public Safety Power Shut-off (PSPS) and Enhanced Power System Settings (EPSS) 
o Distribution OPW and IPW models  
o Transmission Operability Assessment 

The outputs of the planning and operational models, along with input from Public Safety Specialists (PSS) and 
other Subject Matter Experts (SME), are used to form PG&E’s Wildfire Mitigation Plan (WMP). 

 

 

Figure 1 – PG&E Risk Management Ecosystem 

 

The WDRM is the primary risk model that PG&E uses to prioritize mitigation work to reduce wildfires initiated by 
the distribution grid. The WDRM produces predictions of wildfire risk and estimates of risk reduction for 
potential mitigation activities. Mitigation program work planners use the WDRM results, along with their 
mitigation program work planning tools to develop work plans that systematically reduce wildfire risk while 
considering constraints such as budget allocation, human and equipment resource capacity, and regulatory 
commitments.  
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Figure 2 – Ecosystem View 2 

 

Wildfire risk modeling, mitigation work planning, and mitigation work execution occur on overlapping time 
cycles. Figure 3 illustrates the expected coordination of the development and execution workflows. 

 

 

Figure 3 – WDRM Development Schedule 
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1.2 The Wildfire Distribution Risk Model (WDRM) 

The WDRM was developed by PG&E’s Risk and Data Analytics (RaDA) team to quantify the risk related to PG&E’s 
overhead distribution equipment (also referred to as assets), which consist of overhead transformers, poles and 
other parts of support structures, lines (conductors), and line-related equipment such as interrupters. 

The WDRM provides predictions of the where, why, 
and how much wildfire risk occurs during a wildfire 
season of June 1st through November 30th.  

The WDRM estimates risk at geographic locations 
along the distribution network and for individual 
assets. The model makes a progression of predictions 
for each location or asset, first determining the 
likelihood of equipment failure or outage, then the 
likelihood of ignition given a failure or outage, and 
finally the expected consequence of an ignition. The 
total risk for a location or asset is calculated as the 
product of the probability of ignition and the 
consequence value. The total risk values are used by 
mitigation work planners to prioritize program 
mitigation efforts.  

It is important to understand that since the WDRM is 
built as a support model for wildfire mitigation 
planning, the model therefore predicts risk as an aggregate value for an annual fire season. The model does not 
predict specific risk for specific, shorter time intervals within a fire season such as on a daily or monthly basis. 
The WDRM model results are relevant only for annual and multi-year planning programs. There are other 
models in the PG&E wildfire risk management ecosystem, such as the PSPS model, which are intended to inform 
on operational risk mitigation using near-term data and forecasts. 

Through modeled relationships between wildfire risk and an array of environmental and asset attributes, the 
WDRM helps mitigation program work planners understand why risk exists at a location or asset, and, therefore, 
which action(s) may be most effective for reducing the wildfire risk.  

Wildfire risk is estimated by first estimating its component parts, then multiplying them together. The two parts 
are: 

1.2.1 Likelihood of a Risk Event (LoRE) 

LoRE refers to the probability of a fire ignition event, or specifically the likelihood of an ignition occurring 
at a given location across the duration of a typical fire season. In WDRM v3, LoRE is predicted by 17 
separate model subsets, each of which predicts LoRE for a specific combination of risk driver and assets. 
These 17 model subsets are grouped into three categories for the purposes of this document; contact 
from object models, conductor & other equipment-related models, and support structure & 
transformer-related models.  Each of the 17 model subsets in WDRM v3 predicts LoRE in two stages: 
First by predicting the probability of an outage from a given category, and second, multiplying the 
probability of outage times the probability of an ignition resulting for an outage of that category. LoRE is 
described further under 3.2 Calculating LoRE (and expected count of events).  

• Provides predictions of 
wildfire riskWDRM

• Risk is predicted at geographic and 
specific asset locations along PG&E's 
overhead distribution network

Where is the 
risk?

• Risk is dependent on asset attributes, 
environmental conditions, and other 
factors

Why does the risk 
exist?

• Risk scores are determined as a function 
of probability of ignition and wildfire 
consequence

How much risk is 
there?

• Risk is predicted in aggregate for a fire 
season (June to November)

When does the risk 
apply?

Figure 4 – WDRM Objectives 
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1.2.2  Consequence of a Risk Event (CoRE) 

CoRE refers to the impact of an event (in terms of damage and hazard posed to the natural and built 
environment). The CoRE varies across the region based on simulated fire outcomes using detailed fuels, 
weather, and topography data. There is only one CoRE value for each 100m x 100m location along the 
grid (a.k.a. grid pixel) and the CoRE values are highest under location-specific conditions that simulate 
destructive fire outcomes (e.g., CoRE is generally higher at locations that are typically dry, windy, and 
have lots of burnable fuel). CoRE is described further under Section Calculating CoRE. 
 

 

Figure 5 – Risk Approach Overview 

 

1.3 Annual Program Planning for PG&E’s Mitigation Programs 

The WDRM primary purpose is to inform various PG&E wildfire risk mitigation plans, also known as Work Plans. 
Work plans are produced, then executed, by various programs, including: 

• Enhanced Vegetation Management (EVM) – performs expanded vegetation trimming and removal in 
selected locations 

• System Hardening – replaces existing assets with more resilient versions (e.g., stronger poles and wires) 
or moves assets to lower-risk locations (e.g., underground, different routes, etc.) 

• Pole Replacement – replaces old and worn wood distribution poles 
• Transformer Replacement – replaces old and overloaded distribution transformers 
• Other inspection and repair programs – typically focused on finding and quickly fixing various overhead 

distribution asset issues 

The output of the WDRM is a spatial map with several layers – each characterizing risk from different causes or 
assets. These layers of risk can be examined and compared individually, or they can be composited together to 
understand the full risk from overhead distribution lines at a particular location or asset. 

Conductor Outage 
Models

Vegetation Outage 
Models

Fire 
Event

Wildfire 
Consequence 

Model

Support Structure 
Outage Models

Transformer Outage 
Models Probability 

of Ignition 
Given 

Outage

Risk = Probability(Outage) x Probability(Ignition Given Outage)x Wildfire Consequence

Voltage Control Outage 
Models

3rd Party Outage 
Models

Animal Outage Models

Probability Consequence
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Figure 6 – Compositing of Risk Overview 

Note that the risk varies across the geographic area depending on the characteristics of the environment, the 
weather, the vegetation, and the assets themselves. In Section 3, the RaDA team describes the modeling of each 
subset (or layer) and the compositing together of these layers to help inform PG&E’s mitigation efforts.  

1.4 Documentation Structure 

The intent of this document is to lay out the RaDA team’s approach to the third version (v3) of PG&E’s WDRM. 
Source data, modeling approach, and resulting predictions are described in detail. This document also includes a 
description of the RaDA team’s approach for predicting the potential reduction of risk from mitigation efforts 
targeting specific categories of outages and ignitions.  

While this document seeks to provide a lay reader with a comprehensive understanding of the WDRM, it is not 
intended to provide detailed mathematical or scientific description of all methods in use. Furthermore, while the 
application of WDRM predictions to work plan development is summarized, detailed description of how work 
plans are developed and executed is outside the scope of this document.  

With this document: 

• Section 2 provides a description of WDRM v3 improvements 
• Section 3 presents the WDRM v3 development approach to risk prediction 
• Section 4 discusses WDRM v3 predictive results and validation process  
• Section 5 provides a schedule of future WDRM improvements 
• Sections 6, 7, and 8 are appendices providing a more detailed discussion of covariate selection and 

tuning, special model topics, and methodological details 

  

Layers 
represent 

various causes 
or drivers of risk 
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2 WDRM v3 Improvements 
2.1 WDRM Version Evolution 

Mitigating wildfire risk posed by utility assets is a rapidly evolving area of practice where improvements are 
achieved through the adoption of new data and methods. As such, PG&E’s WDRM has evolved – and improved – 
over time. 

The evolution and improvement of PG&E’s WDRM from the 2019 WDRM v1 through the 2022 WDRM v3 is 
outlined in Figure below: 

 

Figure 7 – WDRM Evolution and Improvement 

 

Version 1 (v1) – 2017 Initial RAMP filing under the S-MAP agreement 

The first-generation RAMP model for Enterprise Risk Management used probabilistic modeling. It was built in an 
Excel format (with an add-in feature called @Risk) and relied on Monte Carlo simulation to produce a baseline 
and mitigated Multi Attribute Risk Score (MARS1) and Risk Spend Efficiency2 (RSE). The first version of the model 
used in the 2019 WMP predicted wildfire risk on a per-circuit basis and circuit segment basis, for High Fire 
Threat District (HFTD) only. 

In 2019, PG&E started to prioritize circuits and circuit segments for wildfire risk mitigation using a probability of 
ignition from this v1 model, and wildfire consequence predictions from fire modeling software vendor REAX. 

Mitigation work planned with the benefit of the v1 WDRM was performed during 2019, 2020, and 2021 
depending on the work plan. 

 
1 The pre-cursor to multi-attribute value function (MAVF). 
2 Risk reduction divided by the cost of mitigation. 
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Version 2 (v2) – 2020-2021 Second RAMP filing in accordance with the S-MAP Settlement Agreement (Dec 2018) 

The second generation of the WDRM took a meaningful step forward by using more advanced modeling, 
examining more sub-drivers with regards to ignitions, and using PG&E’s version of the CPUC’s multi-attribute 
value function (MAVF) to predict wildfire consequences, as required by the S-MAP Settlement Agreement. 
During the second year of the filing, the v2 model was improved to use more advanced algorithms and machine 
learning.  

PG&E also improved the modeling to be more granular spatially and by risk driver. The spatial resolution of the 
model was improved from circuits in v1 to 100m x 100m areas (pixels) within HFTD in v2. In addition, the RaDA 
team modeled vegetation-caused ignitions separately from other ignitions along conductor lines to understand 
these two risk drivers. This resulted in two related but separate models (i.e., vegetation-caused and conductor-
involved), each of which was used by a different wildfire risk mitigation program (EVM and System Hardening, 
respectively).  

The second version was also upgraded to utilize physics-based fire simulation outputs provided by vendor 
Tecnosylva, mapped into MAVF fire size/severity tranches based on their simulated characteristics, to quantify 
wildfire consequence.  

Version 3 (v3) – Modeling in 2021 for use in 2022+ 

Within the most recent model, which is the focus on this document, PG&E implements numerous improvements 
motivated by internal review as well as in reaction to feedback from public safety specialists, partners, 
interveners and a third-party review.  

This version utilizes more-advanced machine-learning modeling techniques, incorporates newly available data, 
adds predictions of wildfire risk reduction when mitigating various sources of risk, expands to understand 
additional ignition sources and sub-drivers, and more. 

This version also models several “causal pathways” to ignitions separately, allowing for the nature of these 
causes to inform the type of model structure and relevant covariates. This also allows for a more specific 
mapping between cause categories and the mitigations that address them.  

2.2 v3 Improvement Highlights 

The key improvements for WDRM v3 include: 

• Updated and expanded outage and ignition training event data  
o PG&E has a rich set of ignition data, starting in 2015. The v3 model estimates both the 

probability of outage and probability of ignition from outages using outage and ignition data 
through 2020 (where outage data includes imputed data from damages incurred when the 
power was off for PSPS events) to enable more detailed dissection of data by cause and 
equipment involved without the loss of predictive power.  

• More accurate, covariate data inputs  
o v3 includes more accurate inputs such as tree data from a combination of LiDAR and satellite 

data, updated weather data from PG&E’s meteorology team, tree species data, predictions from 
PG&E’s pole loading simulation program, etc.  

• An improved wildfire consequence model 
o The wildfire consequence model received a major upgrade, using improved wildfire simulation 

data and calibration with historical fire records to provide improved predictions. 
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o In line with an E3 validation report recommendation, the planning and operational versions of 
wildfire consequence were developed from a common core data set and framework. This has 
improved the coordination between the two models. 

o The fuels layer used in the Tecnosylva fire simulation was updated to replace current fire scars 
with a 2030 forecast. 

• New subset models to better characterize risks and inform work planning  
o Version 3 of the model expands from 2 subset models in v2 to 17 subset models in v3. These 

new subset models are sub-divided based on primary/secondary voltage equipment, causes, 
and equipment types. It also includes a separation of branch, trunk, and “other” failures for 
vegetation, and a distinction between equipment failures due to internal causes (e.g., electrical 
overload) vs. external causes. 

• Expansion of the geographic area  
o v3 expands beyond Tier 2 and 3 High Fire Threat Districts (HFTD) to predict wildfire 

consequence, outage probability, and ignition probability across PG&E’s entire distribution 
system. 

o Note that some areas of the distribution system where wildfire ignitions are considered to be 
essentially impossible (e.g., in dense urban areas, in agricultural areas, in paved and otherwise 
non-burnable areas) are excluded from the simulations that quantify consequence and 
represented by a backstop value that is lower than the simulated values. 

• New data frame models applied to equipment failures 
o Version 3 of the model includes asset-level data frame models of equipment for support 

structures (i.e., poles and cross arms) and transformers. 
o This model form is new in v3 – in v2, all failures were modeled with the assumption that risk was 

most correlated with environmental conditions like wind, moisture, etc. In v3, data frame 
models predict risk that is more typically correlated with the passage of time – like electrical 
overload posing a risk to transformers, which increases over time as the transformers are 
overloaded.  

o This was a recommendation from the E3 validation to develop and evaluate a wider range of 
model algorithms for each model subset. 

• Compositing of subset-specific probabilities and risk scores 
o Version 3 of the model introduces the compositing of risk scores, i.e., separately estimating risks 

for each subset model corresponding to a specific causal pathway of ignitions, and then 
aggregating predictions across categories to assign total risks for all locations on the grid. 

• Prediction of risk reduction from program-specific mitigation activities 
o To better-inform work planning teams seeking to optimize the risk reduction potential of their 

mitigation activities (like EVM and System Hardening), v3 computes mitigation predictions by 
systematically applying (i.e., “accurately keeping the books on”) Subject Matter Expert (SME) 
estimates of the effectiveness of various mitigation activities under various circumstances. An 
estimate of risk reduction potential for each mitigation category is computed for all 
locations/assets in the distribution system. 

o This quantification of mitigation potential provides insights into their likely efficacy in different 
locations and facilitates tradeoffs between options.  

o This information feeds into a planning process whose goal is to focus work plans on 
locations/assets with highest risk reduction potential for a given mitigation option. 
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• Automation of the modeling framework to ensure consistency and flexible configuration allowing for 
additional insights  

o A modular configuration and automation framework is implemented to support the composite 
modeling of v3.  

o The RaDA team prioritized repeatable modeling runs driven by configuration of modular 
components and producing summary and detailed data products for every step in a run. 

o The composite modeling framework is implemented in Python and run in an AWS cloud 
environment. 

2.3 Key Performance Metrics 

The changes summarized above have improved the WDRM’s ability to predict (and thus reduce) risk. The RaDA 
team uses a Receiver Operating Characteristic (ROC) curve and its Area Under the Curve (AUC) score as the key 
metrics of probability model performance. The team also uses a Top 20% concentration factor metric as a 
secondary metric focused on the forecasted yield of true positives in the top 20% of a model prioritization. 

2.3.1 ROC and AUC Curves 

The ROC curve is based on sorting the predicted probability (i.e., of experiencing an outage or ignition during a 
typical/future fire season) from highest to lowest for all locations/assets and then checking whether each 
asset/location, in order of probability, actually experienced an event from test data that is outside the event 
data used to train the model, (i.e., 25% of all outages or ignitions, depending on the model, randomly selected 
to be withheld from the training data for the purposes of testing model prediction accuracy). For every location 
or asset that experienced an event (true positive), the value of the y-axis is increased by one; and for everyone 
where an event did not occur (false positive) the value of the x-axis increased by one. This continues until all 
locations are evaluated (and therefore all events are accounted for). The x- and y-axis are typically normalized to 
the 0-1 fraction of their total counts.  

In its normalized form, a straight diagonal line ROC has an 
area under the curve (AUC) of 0.5 and corresponds to a sort 
order that is no better than random guessing. The steeper the 
beginning of the ROC and the flatter the end, the more the 
sort order has concentrated to true positive predictions in the 
upper ranks. The highest possible AUC would correspond to a 
sort order that is 100% locations/assets that experienced an 
event until all have been accounted for and then all those that 
did not. This corresponds to an AUC of 1.0 (straight up from 0 
to 1 – an unbroken streak of all true positives – and then 
straight over to 1). Across the various model components, the 
current AUC scores ranged from 0.65 to 0.85, thus indicating 
good to strong predictions.  

 

The interpretation of the ROC curves can be thought of in terms of the fraction of non-ignition locations you 
would need to affect (x-axis) to ensure that you affect some fraction of ignition locations (y-axis), thus avoiding 
an ignition (or outage for an outage model). The steeper the curve, the less likely that work will be performed 
that doesn’t help avoid ignitions.  

Figure 8 – Example ROC Curve 
with AUC Shaded 
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2.3.2 Top 20% Concentration Factor 

This metric has been created by the RADA team to provide an improved 
insight on the anticipated yield of true positives in the first 20% of a model 
prioritization to the work plan development teams. As most work plans are 
prioritizing the top 80% of risk in the top 20% of locations this is a measure 
of how effective the model prioritization will be in directing work to 
locations where events will occur. Similar to the ROC-AUC this metric is 
developed in reference to a random selection of locations. As shown in 
figure 8, the Top 20% Concentration factor provides a measure of the 
predictive performance on the first portion of the ROC-AUC. 

 

 

 

2.3.3 v3 Performance 

The full dataset that trained the overall model (i.e., “all modeled subsets”) achieved an AUC score of 0.68. An 
AUC score of 0.68 is interpreted as a 68% chance that the model can distinguish between where ignitions are 
and are not likely to occur. This is for a much more extensive model than presented in v2. 

While the added models to the System Hardening Composite makes a direct comparison between v2 and v3 
difficult, the closest comparison is a comparison of the vegetation models. In v2 of the WDRM, the vegetation 
model had an overall AUC score of 0.73, while this year’s model (which models trunks, branches, and other 
separately) improves over the v2 performance, with an AUC score for the vegetation composite of 0.78. While 
the AUC for the System Hardening composite drops, the v2 model focused solely on the conductor whereas the 
v3 considers several additional risk drivers while maintaining a satisfactory predictive capability. 

The Top 20% Concentration Factor metric presents a similar pattern with the System Hardening still maintaining 
a factor greater than 2 and the vegetation composite improving to a concentration factor of 2.8. 

 

Figure 10 – WDRM v2 vs. v3 Predictive Performance for System Hardening and Vegetation 

 

Figure 9 – Top 20% Concentration 
Factor Metric Example 
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Throughout this document, the AUC scores are presented as a reflection of each individual model’s 
performance, as well as for the overall composites being used. The performance metrics for each sub-model 
(e.g., AUC for the ignition probability output predicting ignitions and the Top 20% Concentration Factor for the 
Ignition Probability modeling efforts) are presented along with the mean annual wildfire season ignitions. This 
table is ranked from highest to lowest AUC.  

 

Table 1 – WDRM Model Subsets Ranked by AUC 
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3 WDRM v3 Risk Prediction 
3.1 Risk Model Overview 

The two components of risk in the WDRM v3 are: (1) the Likelihood of a Risk Event (LoRE) expressed as the expected 
count of risk events per fire season and (2) the Consequence of a Risk Event (CoRE) given its location, where Risk = LoRE 
x CoRE. An overview of the methods described in this section is shown in the figure below. The risk events modeled by 
the WDRM are distribution-caused ignitions, with the probability of ignition, also known as LoRE, estimated separately 
for events grouped by various combinations of cause, sub-cause and equipment involved. Within each grouped subset of 
all events, the probability of outage is estimated first, with the result multiplied by the probability of an ignition given an 
outage to produce an estimate of LoRE. Subset-level LoRE values can then be aggregated across subsets and multiplied 
by CoRE to compute risk across causes and equipment types. Subset-level LoRE and risk values can also be used to 
support more granular mitigation planning where mitigation is understood to disrupt specific causes or protect specific 
equipment types. 

 

Figure 11 – WDRM Overview 
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3.1.1 Key Modeling Constructs – Modeling Categories and Subsets 

For the purposes of this document, there are 3 WDRM modeling categories and 17 non-overlapping event subsets as 
shown in the table below. The 17 subsets are defined by categorical attributes of the events. The three Modeling 
Categories are higher level groupings of subsets and are used in this document to present high-level concepts, examples, 
and results without needing to document the details of all 17 subsets separately. 

Table 2. WDRM Modeling Categories 

Modeling Category Category Subsets 

Object Contact 

• Risk caused by contact from foreign objects – 6 subsets 
o Animal (squirrel) 
o Animal (bird) 
o Animal (other) 
o Third party balloons 
o Third party vehicles 
o Third party other 

• Risk caused by vegetation (across all assets) – 3 subsets of outages 
o Trunk-failure-caused – for all equipment types 
o Branch-failure caused – for all equipment types 
o Other types of vegetation failure caused – for all equipment types 

Conductors & 
Other Equipment  

• Risk caused by electrical or mechanical failures of equipment such as conductors, 
interrupters, or other equipment such as switches and fuses – 4 subsets 

o Primary conductor 
o Secondary conductor 
o Voltage Control equipment type 
o Other Equipment type 

Support 
Structures & 
Transformer  

• Risk caused by mechanical failures of non-electrical equipment such as poles and 
other components of support structures and electrical failure of transformers – 4 
subsets 

o Support structure– equipment electrical failure caused 
o Support structure – equipment caused 
o Transformer failure – equipment caused 
o Transformer failure – equipment leaking caused 
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3.1.2 Risk Calculation Process 

The one-page call out box below provides a summary of the model. Each of the bold statements is described in more 
detail within the sub-sections below, including:  

• LoRE – Probability of Ignition 
• CoRE – Consequence Value 
• Wildfire Risk Scores 

 

The high-level calculation process for LoRE, or probability of ignition, is:  

 

Figure 12 – LoRE Calculation Process 

 

The high-level calculation process for CoRE, or Consequence value, is:  

 

Figure 13 – CoRE Calculation Process 

 

Using the results from LoRE and CoRE, the Wildfire Risk Score calculation process is:  

 

Figure 14 – Wildfire Risk Score Calculation Process 
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3.2 Model Development Process  

The WDRM v3 is implemented primarily in Python, using a sequence of interconnected configurable 
computation tasks to complete a model run, store its results, and report out metrics of model performance. The 
key modeling steps are described in the following table. 

Table 3 – WDRM Model Development Process 

WDRM Model Development Process 

1 

Define of the target set, which is the set of all events of type outage, ignition, and PSPS hazards and 
damages that are used to train the sub-models that comprise the WDRM v3. The target set is limited 
to events that occurred during the fire season months of June through November between 2015 and 
2021 and is filtered to exclude events involving underground equipment, where outages were caused 
by wildfire or planned by the company, and the small portion of events without valid locations.  

2 Identify subsets of the target set that share cause, sub-cause, and type of equipment involved. The 
subset manager (SSM) divides the target set into 17 non-overlapping subsets that span the target set. 

3 Prepare the model covariate data.  
4 Train the probability of ignition given an outage model using target set data. 
5 Predict P(outage) and P(ignition|outage) for each subset, yielding estimates of P(ignition). 
6 Determine the mitigation potential from various measures applied to each subset’s risk. 

7 Composite probabilities and risks from individual subsets into broader categories used for planning 
purposes. 

 

Unless otherwise noted, 25% of training data is withheld from each model fit to be used to compute out of 
sample predictive performance metrics. 
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3.3 LoRE – Probability of Ignition 

The sections below describe the data sets for models, the inputs (or covariates) to the LoRE models, and how 
the WDRM v3 estimates the probability of an ignition through two modeling steps, in which the probability of an 
outage for all assets or grid locations for each subset of outages and the probability an ignition is associated with 
an outage, given its characteristics, where P(ignition) = P(ignition|outage) x P(outage). 

Throughout this description of calculating LoRE, this document refers to two different types of outage 
probability models: MaxEnt and Asset Attributes models. One or the other of these approaches are applied to all 
17 subsets of outages. For subsets with outages driven by environmental determinants, such as vegetation 
caused outages, the WDRM v3 employs a MaxEnt model structure, with primarily spatially varying covariates 
resulting in grid pixel level estimates of P(outage). For modeling categories that relate to equipment failures due 
to internal attributes, such as transformers and support structures, the WDRM v3 employs Asset Attribute 
models fit via Random Forest to one row of data per-asset-year.  

A third model type, Logistic Regression, is used to estimate the probability of ignitions associated with outages, 
given outage characteristics. 

3.3.1 Model Target Event Dataset 

The WDRM v3 draws on approximately 114,000 events in the target event dataset.3 The definition of the events 
used, the target set, the source of this information, and the sub-setting of this information are described below. 

For WDRM v3, the event data includes three types of events, which come from three different data sets. 

• Outages and Forced Outages 
o Source: PG&E’s Integrated Logging Information System, ILIS. 
o Outages are when electricity ceases to be delivered to customers. Detecting outages is done 

electronically and is automatically recorded. 
• Hazards and Damages 

o Source: Post-PSPS Inspection Data. 
o These are issues classified as potential hazards or equipment damages identified during the 

inspection of de-energized equipment before power can be restored after a PSPS event. 
• Ignitions 

o Source: PG&E’s Historical Ignitions Data (2,500 CPUC reportable ignitions 2015-2021; 1,900 non-
reportable ignitions). 

o This is the raw data behind CPUC reportable ignitions limited to reportable fire events that meet 
the following criteria: 

• A self-propagating fire of material other than electrical and/or communication facilities. 
• The resulting fire traveled greater than one linear meter from the ignition point. 
• The utility has knowledge that the fire occurred. 
• That caused damage to utility facilities and whose ignition is not associated with utility 

facilities are excluded from this reporting requirement (CPUC, 2014). 

Note that the ignition data set includes both CPUC reportable and non-reportable ignitions, 
occurring with or without an outage. Fires that caused damage to utility facilities and whose 
ignition is not associated with utility facilities were excluded. 

 
3 Note that the numbers do not include events categorized as “wildfire mitigation” or “underground events.” 
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Collectively, the three types of events are described as failures. Failures refer to incidents where damage to the 
grid has occurred, or damage to the environment has occurred due to grid equipment operation even if no 
outage occurs. The failures data includes events that come from: 

• Within the boundaries of PG&E’s overhead distribution lines only 
• 2015 through 2021 
• Fire season only (June through November) 

Not included in the target failure dataset are: 

• Outages directly caused by wildfires 
• Outages or ignitions caused by underground equipment 

Events from within the fire season are selected to avoid training the model on events from causes that are not 
viable during the fire season, such as iced lines, snow loading, water damage, and water facilitated outages. 
Including such events would run the risk of training the WDRM to estimate wildfire risk in cases where there is 
none. 

Categorical attributes of target set events, including primary vs. secondary voltage, cause, sub-cause, and the 
type of equipment involved, are used to define 17 non-overlapping subsets in the WDRM v3 are summarized in 
the following table. 

Table 4 – Model Subset Characteristics 

Subset Voltage 
Category 

Equipment 
Type Cause Sub-

cause 
Modeling 
Category 

Model 
Type 

vegetation_other Any Any Vegetation Other Object Contact MaxEnt 

primary_conductor Primary conductor Any NA Equipment MaxEnt 
vegetation_branch Any Any Vegetation Branch Object Contact MaxEnt 

vegetation_trunk Any Any Vegetation Trunk Object Contact MaxEnt 

animal_bird Any Any Animal Bird Object Contact MaxEnt 
secondary_conductor Secondary Conductor Any NA Equipment MaxEnt 
other_equipment_type Any Other Any NA Equipment MaxEnt 
third_party_balloon Any Any Third party Balloon Object Contact MaxEnt 
third_party_other Any Any Third party Other Object Contact MaxEnt 
third_party_vehicle Any Any Third party Vehicle Object Contact MaxEnt 
animal_squirrel Any Any Animal Squirrel Object Contact MaxEnt 
voltage_control 
equipment_type 

Any Voltage 
Control 

Any NA Equipment MaxEnt 

animal_other Any Any Animal Other Object Contact MaxEnt 
support_structure 
equipment_cause 

Any Support 
Structure 

Equipment Structural Support Structure/ 
Transformer 

Asset 
Attribute 

support_structure 
equipment_electrical 

Any Support 
Structure 

Equipment Electrical Support Structure/ 
Transformer 

Asset 
Attribute 

transformer 
equipment_leaking 

Any Transformer Equipment Leaking Support Structure/ 
Transformer 

Asset 
Attribute 

transformer 
equipment_cause 

Any Transformer Equipment Failure Support Structure/ 
Transformer 

Asset 
Attribute 
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The event counts, ignition counts, and ignitions per-outage rates for all 17 subsets are shown in the table below, 
sorted from highest to lowest event count. Note the substantial variation in ignition counts and ignitions per 
outage, demonstrating that different causal pathways leading to failures vary in their likelihood to cause 
ignitions. 

 

Table 5 – WDRM v3 Target Dataset 

Subset Event 
Count 

Ignition 
Count 

Ignition per 
Outage  

other_equipment_type 46,981 316 0.67% 
primary_conductor 12,343 974 7.89% 
transformer_equipment_cause 8,809 62 0.70% 

third_party_vehicle 6,952 265 3.81% 
vegetation_branch 6,912 406 5.87% 
animal_bird 4,831 219 4.53% 
support_structure_equipment_cause 4,631 194 4.19% 

vegetation_trunk 4,388 329 7.50% 
secondary_conductor 3,801 216 5.68% 
animal_squirrel 3,694 40 1.08% 
third_party_other 2,202 102 4.63% 
third_party_balloon 2,127 103 4.84% 
support_structure_equipment_electrical 2,096 582 27.77% 

vegetation_other 1,655 184 11.12% 
transformer_equipment_leaking 1,126 0 0.00% 

animal_other 834 106 12.71% 
voltage_control_equipment_type 502 99 19.72% 

Totals 113,884 4,197 3.69% 

 

Within the subsets, the data is filtered to look for complete cases, that is, cases that include all the event and 
covariate data needed to train the model – the remaining events provide the training event count. The asset 
attribute models withhold test event data from their official model runs, whereas the MaxEnt models train on all 
available data, with train/test splits supporting performance metrics computed as separate diagnostic model 
runs – for this reason there are test events withheld from the official MaxEnt fits and their corresponding test 
event counts are not applicable. 

Subsets modelled using MaxEnt don’t impute values missing from their raster-based covariates and drop some 
training events due to missing data. It is common for geo-tif data to be masked out over bodies of water or 
where the data set in question is otherwise deemed not applicable, but differences in the pixel size and 
projection between source tifs and grid pixels can cause some grid pixels to lack some covariate data. Subsets 
modelled using asset attributes impute missing values and thus do not drop any events. 
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The following table summarizes event training, test, and dropped counts for each of the model subsets.  

Table 6 – Training Event Counts 

Subset 
Training 

Event 
Count 

Test 
Event 
Count 

Dropped 
Event 
Count 

other_equipment_type 43,356 - 3,625 

primary_conductor 11,100 - 1,243 

transformer_equipment_cause 5,102 4,751 0 

third_party_vehicle 6,549 - 403 

vegetation_branch 6,640 - 272 

animal_bird 4,489 - 342 

support_structure_equipment_cause 1,363 518 0 

vegetation_trunk 4,149 - 239 

secondary_conductor 2,493 - 1,308 

animal_squirrel 3,474 - 220 

third_party_other 1,883 - 319 

third_party_balloon 1,959 - 168 

support_structure_equipment_electrical 854 284 0 

vegetation_other 1,559 - 96 

transformer_equipment_leaking 626 599 0 

animal_other 742 - 92 

voltage_control_equipment_type 445 - 57 

 

The MaxEnt models and support structure asset attribute models were trained on 75% train and 25% test 
samples of subset specific events. The transformer asset attribute models used a monthly train test split 
described in 8.2.2.4 Model train, test, predict dataset splits. 
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3.3.2 Model Covariates 

Model covariates refer to the data used as explanatory variables in the formulation of the models. The model 
covariates, also referred to as model features, become model inputs. Within subset models, the objective is to 
identify which covariate environmental conditions and asset attribute values are most common among ignition 
locations along the distribution grid. The WDRM uses these contributing covariates to create predictive models 
of probability for future ignitions across the grid. Covariates selected for modeling must have values available for 
every location at which an ignition probability prediction is to be made. 

Model covariate descriptions, data sources, and model use can be found in Appendix: Pool of Covariates. Model 
covariates come from three general categories: 

• Environmental, which are spatially dependent and have location-specific characteristics.  
o HFTD tier 
o Prevailing climate 
o Estimated LiDAR satellite strike tree counts 
o Tree species 
o Vegetation types 
o Topography 
o Soil characteristics 

• Weather-dependent, influencing equipment failure rates and ignition viability. 
o Wind speed 
o Temperature 
o Fuel moisture 
o Precipitation totals 

• Asset characteristics, used to consider physical states that degrade over time due to operation and 
environmental factors. Typically, an asset attribute state can be modified through mitigation.  

o Voltage type (primary or secondary) 
o Support structure age 
o Support structure height 
o Support structure circumference 
o Open maintenance tags 
o Structural loading estimate 
o Transformer age 
o Transformer manufacturer 
o Transformer electrical loading characteristics 
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The following table summarizes the environmental and weather-dependent data used by the WDRM. 

 

Table 7 – Environmental and Weather Covariate Data Source Summary 

Data Set Vintage Date 
Span Description 

CWHR 2014 n/a 
California Wildlife Habitat Relationships (CWHR) version 9.0 - produced by 
California Department of Fish and Wildlife. 

USSOILS 1995 n/a USSOILS is an Arc 7.0 coverage containing hydrology-relevant information 
for 10,498 map units covering the entire conterminous United States. The 
coverage was compiled from individual State coverages contained in the 
October 1994 State Soil Geographic (STATSGO) database by the United 
States Geological Survey (USGS). 

gridmet 2019 1979-
2019 

University of Idaho Gridded Surface Meteorological Dataset provides high spatial 
resolution (~4-km) daily surface fields of temperature, wind, precipitation, 
humidity, and radiation across the United States. 

LANDFIRE  2016 n/a LANDFIRE surface fuels model produced by United States Geological Survey 
(USGS). 

NED n/a n/a National Elevation Database (NED) - produced by United States Geological Survey 
(USGS). 

NLCD 2016 n/a National Land Cover Database (NLCD) - produced by United States Geological 
Survey (USGS). 

PG&E 
meteorology 2021 2010-

2020 
POMMS data used as inputs to, or the outputs of, the Fire Potential Index (FPI) 
model 

RTMA Late 
2019 

2016-
2018 

The Real-Time Mesoscale Analysis (RTMA) is a high-spatial and temporal 
resolution analysis for near-surface weather conditions. Includes hourly analyses 
at 2.5 km for the contentinental United States - produced by National Oceanic 
and Atmospheric Administration (NOAA) and National Weather Service (NWS). 

treemap 2014 n/a 
A tree-level model of conterminous US forests circa produced by imputation of 
FIA (US Forest Service Inventory and Analysis) plot data. 

Vegetation 
merged 2019 2019 

High resolution, territory-wide vegetation data produced by merging PG&E-
collected LiDAR data and Salo Sciences-processed satellite data. 

WorldPop 2010 - 
2020 n/a 

WorldPop estimates number of people residing in each 100m grid cell. 
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3.3.3 Predicting Probability of Outage – P(o) 

The determination of wildfire risk for an asset or at a specific grid location starts with predicting the probability 
of an outage – P(o). This section describes the calculation of the probability of an outage for the 17 model 
subsets. For simplicity, the modeling approach is described for the three general modeling categories described 
in the WDRM Modeling Categories table: Object Contact, Conductors & Other Equipment, and Support 
Structures & Transformers. 

Object Contact and Conductors & Other Equipment subsets are modeled with MaxEnt, which uses a spatial 
modeling approach. Support Structures & Transformers subsets make use of asset attribute models. 

The RaDA team then trained and tested the model selected for each 
subset. For each model, the RaDA team validated the model by 
computing model covariate importance and reviewing predictive 
performance metrics for subset models. This was used to diagnose and 
improve subset models. The type of model, the training data set, notable 
aspects of the models and the feature importance and AUC scores for 
each modeling category are described in the following sub-sections. 

For each modeled subset, an iterative process was used by the RaDA 
team data scientists to find an optimal model for predicting P(o).  

 

3.3.3.1 Object Contact P(o) Models 

Grid events due to contact from external objects fall into three causal categories: 

• Vegetation 
o Typically branch or trunk failures that strike and/or exert structural loads on grid equipment 
o Other causes, such as vegetation growing into lines 

• Animals 
o Faults due to spanning contact, usually birds or squirrels 
o Other causes including nests, snakes, and even slugs 

• Third parties 
o Vehicle accidents that damage equipment or poles 
o Metallic balloons that create line shorts/drops 
o Other causes, such as outdoor project accidents, malfunctioning appliances, and gunshot 

damages 

  

3.3.3.1.1 Vegetation P(o) Models 

Vegetation-caused ignitions are caused by the presence of trees whose height and proximity to overhead 
distribution grid equipment make physical contact possible. The WDRM has three vegetation sub-models: 

• Branch 
• Trunk 
• Other causes 

Select model 
covariate 

candidates

Train subset 
model

Test with 
independent 

data

Review 
performance

Figure 15 – Covariate 
Selection Process 

WMP-Discovery2023_DR_OEIS_001-Q007Atch01



26 
 

Internal  

The use of three vegetation subsets provides the Enhanced Vegetation Management (EVM) program team with 
the information needed to select appropriate mitigation actions to address vegetation risks. 

The vegetation model subsets are trained on vegetation interactions with overhead distribution grid equipment. 
The model subsets predict the probability of vegetation-caused outages involving multiple equipment types, 
such as conductors, support structures, switches, fuses, transformers, etc. Predictions are made for 100m x 
100m geographic pixel locations along the distribution grid infrastructure. 

MaxEnt models are used for predicting vegetation-based outages. The MaxEnt model was selected for its ability 
to predict events that are primarily informed by spatial and environmental factors. The use of MaxEnt for 
vegetation models for WDRM v3 is consistent with the approach used for WDRM v2, but with one key 
difference. WDRM v2 used MaxEnt to directly predict the probability of ignition (P(i)), whereas WDRM v3 
decouples the P(o) from P(i). See the Predict probability of ignition given outage – P(i|o) section of this 
document for more details on predicting of probability of ignition from an outage. 

Events used for training the vegetation model subsets include outages, PSPS damages, PSPS hazards, and 
ignitions not known to be associated with an outage. The events were pulled from the fire seasons for 2015 
through 2021. Details on events counts for model training can be found in the Training Event Counts table. 

WDRM v3 highlights for the modeling the P(o) vegetation subsets: 

• Tree mortality and susceptibility to branch drops is partially determined by habitat and biological 
characteristics, which available for modeling via broad spatial tree species designations. WDRM v3 used 
the California Wildlife Habitat Relationships (CWHR) 2014 data set as a proxy for tree species. CWHR is a 
predictive model that lists species predicted to occur at a given location under certain habitat 
conditions.  

• LiDAR data was combined with satellite data to get better estimations of tree counts, tree density, and 
tree heights to characterize the fall-in trees near the distribution grid. 

• Satellite derived tree data was used to supplement LiDAR data for full-service territory coverage, as 
LiDAR flights only took place only over the HFTD areas. 

• Soil type data was introduced as a covariate. 
• PG&E’s internal meteorology data was adopted for v3 to capture weather conditions, including seasonal 

precipitation, prevailing fuel moisture, and prevailing winds. 

 

The vegetation model subsets demonstrated strong performance. 
All three vegetation subsets predicted test event outages with AUCs 
greater than 0.83, as shown in the ROC plot to the right. 

 

 

 

 

 

 

Figure 16 – Vegetation 
Subsets P(o) ROC Curves 
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Covariate analysis shows that tree characteristics and land use types tend to be the top performers for 
vegetation subsets. 
 

 

Figure 17 – Vegetation Subsets P(o) Covariate Analysis 

 

3.3.3.1.2 Animal P(o) Models 

Animal-related outages are caused by contact spanning phases or a phase to ground. Animal events are driven 
typically by animals with propensity to climb or perch atop poles and lines. The WDRM has three animal sub-
models: 

• Bird 
• Squirrel 
• Other causes 

The use of three animal subsets provides mitigation teams with the information needed to select appropriate 
corrective actions to address animal risks. 

The animal model subsets are trained on animal interactions with overhead distribution grid equipment. The 
model subsets predict the probability of animal-caused outages involving multiple equipment types, such as 
conductors, support structures, switches, fuses, transformers, etc. Predictions are made for 100m x 100m 
geographic pixel locations along the distribution grid infrastructure. 

MaxEnt models are used for predicting animal-based outages. The MaxEnt model was selected for its ability to 
predict events that are primarily informed by spatial and environmental factors.  

Events used for training the animal model subsets include outages, PSPS damages, PSPS hazards, and ignitions 
not known to be associated with an outage. The events were pulled from the fire seasons for 2015 through 
2021. Details on events counts for model training can be found in the Training Event Counts table. 
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WDRM v3 highlights for the modeling the P(o) animal subsets: 

• Preliminary results from a single animal subset model were reviewed by PG&E Subject Matter Experts 
(SMEs). On their advice, the original single animal model subset was the divided into three subsets. 
Subsequent analysis confirmed the predictive value of using three animal model subsets.  

• Tree species and location were important covariates for differentiating between squirrel and bird causes 
for outages. 

• Covariates that captured urban versus rural conditions were useful detecting habitat changes that 
enabled the model to differentiate between various types of animal damage. 

• Anecdotally, it was observed that the spatial distribution for bird-related events was much broader than 
the spatial distribution for squirrels. This validated the creation of the bird and squirrel specific subsets. 

 

While all animal model subsets demonstrated good performance, the 
squirrel-specific subset produced an exceptional result with an AUC of 
0.88. The ROC performance plots for the three animal subsets 
generated against predicted test event outages are shown to the 
right.  

 

 

 

Covariate analysis shows that tree characteristics, distribution line 
characteristics, and land use types tend to be the top performers for 
animal subsets. 

 

Figure 19 – Animal Subsets P(o) Covariate Analysis 

 

Figure 18 – Animal Subsets 
P(o) ROC Curves 
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3.3.3.1.3 Third Party P(o) Models 

Third party-related outages are caused by human activity external to PG&E operations. The WDRM has three 
third-party sub-models: 

• Vehicle 
• Balloon 
• Other causes 

The use of three third party subsets provide mitigation teams with the information needed to select appropriate 
corrective actions to address human activity risks. 

The third party model subsets are trained on human interactions with overhead distribution grid equipment. 
The model subsets predict the probability of third party-caused outages involving multiple equipment types, 
such as conductors, support structures, switches, fuses, transformers, etc. Predictions are made for 100m x 
100m geographic pixel locations along the distribution grid infrastructure. 

MaxEnt models are used for predicting third party-based outages. The MaxEnt model was selected for its ability 
to predict events that are primarily informed by spatial and environmental factors.  

Events used for training the third party model subsets include outages, PSPS damages, PSPS hazards, and 
ignitions not known to be associated with an outage. The events were pulled from the fire seasons for 2015 
through 2021. Details on events counts for model training can be found in the Training Event Counts table. 

WDRM v3 highlights for the modeling the P(o) third party subsets: 

• Preliminary results from a single third party subset model were reviewed by PG&E Subject Matter 
Experts (SMEs). On their advice, the original third party model subset was the divided into three subsets. 
Subsequent analysis confirmed the predictive value of using three model subsets.  

• Line voltage and line characteristics were important covariates for understanding line spacing for 
balloon-related faults and support structure durability for withstanding vehicle impacts 

• Covariates that captured urban versus rural conditions enabled the model to differentiate between high 
population density (balloons) and low population density (vehicular) events 

 

 

While all third party model subsets demonstrated good performance, 
the balloon-specific subset produced an exceptional result with an AUC 
of 0.89. The ROC performance plots for the three third party subsets 
generated against predicted test event outages are shown to the right.  

 
 

 

 

 

 

 

Figure 20 – Third Party 
Subsets P(o) ROC Curves 
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Covariate analysis shows that tree characteristics and land use types tend to be the top performers for third 
party subsets. 

 

 

Figure 21 – Third Party Subsets P(o) Covariate Analysis 
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3.3.3.2 Conductor & Other Equipment P(o) Models 

The conductor & other equipment subsets model equipment failures that are environmentally driven, typically 
due to factors contributing to gradual degradation or extreme conditions that result in premature failure. Four 
model subsets were developed for conductor & other equipment: 

• Primary conductors and interrupters 
• Secondary conductors 
• Voltage control devices 
• Other equipment 

The use of four conductor & other equipment model subsets provides mitigation teams with the information 
needed to select appropriate corrective actions to address equipment risks. 

The conductor & other equipment model subsets are trained on historical failures of overhead distribution grid 
equipment. Predictions are made for 100m x 100m geographic pixel locations along the distribution grid 
infrastructure. 

MaxEnt models are used for predicting conductor & other equipment-based outages. The MaxEnt model was 
selected for its ability to predict events that are primarily informed by spatial and environmental factors. MaxEnt 
allows for a good understanding across the distribution system given that the event data is often uncertain 
regarding exactly which specific piece of equipment failed for any given outage. Therefore, alternative modeling 
approaches that require direct assignment to specific piece of equipment are not viable. 

Events used for training the conductor & other equipment model subsets include outages, PSPS damages, PSPS 
hazards, and ignitions not known to be associated with an outage. The events were pulled from the fire seasons 
for 2015 through 2021. Details on events counts for model training can be found in the Training Event Counts 
table. 

WDRM v3 highlights for the modeling the P(o) conductor & other equipment subsets: 

• Preliminary modeling produced separate primary and secondary voltage subsets for each of conductors, 
interrupters, and other equipment types. 

o Analysis of the interrupter failures found that the devices were often damaged by an event but 
were not the event root cause. Line loading was typically the true cause. 

o Interrupter events were subsequently reclassified with other conductor events 
• A relatively small group of highly ignition prone events involving voltage control devices was identified 

and removed from the other equipment category 
 

While all conductor & other equipment model subsets demonstrated 
good performance, the voltage control device-specific subset produced 
an exceptional result with an AUC of 0.88. The ROC performance plots 
for the four conductor & other equipment subsets generated against 
predicted test event outages are shown to the right.  

 

 

 

Figure 22 – Conductor and Other 
Equipment Subsets P(o) ROC Curves 
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Conductor size and material type, along with voltage, were found to be the most important covariates, 
especially for voltage control devices. 

 

 

Figure 23 – Conductor & Other Equipment Subsets P(o) Covariate Analysis 
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3.3.3.3 Support Structures & Transformers P(o) Model  

The support structures and transformers group of subsets predict the annual probability of individual support 
structure or transformer unit equipment failures along the distribution grid. Four model subsets were 
developed: 

• Support structure equipment cause – pole and other structure failures 
• Support structure equipment electrical – pole fire or electrical-related outage events 
• Transformer equipment cause – transformer overload or failure 
• Transformer equipment leaking – leaking transformer 

 

Figure 24 – Support Structures & Transformers P(o) Model Subsets 

 

A support structure includes the components of a pole that support the overhead system: 

• Pole 
• Crossarm 
• Guy or anchor wire 
• Insulators 
• Supporting hardware and connections 

A support structure equipment failure can include the malfunction of one or more of these components. The 
model predicts the annual probability of an equipment failure per pole or support structure. The support 
structure model considers only wood distribution poles, limiting predictions to those poles constructed with 
wood, throughbore, or centerbore material. Each structure is tracked in the PG&E data model by its primary key, 
the SAP equipment id. 

Transformers are nodes on the distribution grid, identified by a California Grid Coordinate (cgc12), and contain 
one to three transformer units that are identified by an equipment id. When any unit on a transformer fails, 
typically all individual transformer units are replaced. Thus, while planning focuses on the transformer level, 
failures occur at the transformer unit. The transformer model subsets therefore predict transformer unit 
failures. 

The support structure and transformer asset attribute models were modeled using a Random Forest Classifier. 
Random Forest Classifier is a tree-based algorithm that implements a machine learning method called bagging 
to combine the results of many different decision trees fit to sub-samples of training data into one model result, 
minimizing the error. The Random Forest Classifier algorithm was identified as the top performing algorithm for 
the annual asset-level support structure and transformer datasets. Other algorithms explored included: logistic 
regression, maximum entropy, and survival models.  
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A support structure or transformer asset is often removed from service after a major equipment failure event. 
Therefore, it is critical to develop a training data set that can connect the historical conditions of the grid to 
historical equipment failure events to identify patterns in the types of assets that fail. PG&E’s historical asset 
data was used to develop a training dataset that includes the asset attributes for 2015 through 2021 where each 
entry, or row, in the training dataset is considered an “asset-year”. The historical equipment failure events were 
joined to the asset-year data set using the asset’s primary key and the year in which the equipment failure 
occurred. If the asset primary key for the equipment-failure event couldn’t be identified, then the event was 
dropped during join process. Ultimately, as detailed in in the Training Event Counts table, the four model subset 
training datasets included: 

• 3,019 support structure equipment failure events 
• 11,078 transformer equipment failure events. 

 

WDRM v3 highlights for the modeling the P(o) support structures & transformers subsets: 

• The model predicts the probability the asset will experience an equipment failure outage event. This 
tabular asset-level output can be aggregated to provide pixel-level probabilities so that it can be 
combined with other model subsets to form a composite. 

• The models are asset-based, so asset-specific attributes can influence the likelihood of equipment 
failure. As summarized in the covariate selection section below, asset attributes were the most 
influential features in the model algorithm. The influence of asset attributes aligned with the equipment 
failure causal pathway, which helped promote trust and understanding by end users of the models. 

• Model covariates include asset attributes aligned with the mitigation programs using the model. For 
example, asset age, a top performing covariate in all models, is reset to zero once the asset is replaced. 
The subsequent model probability output will decrease for the asset as the model covariates are aligned 
with the current asset state. 

• The training data is structured into asset-years, which track whether there were one or more equipment 
failure events for each asset each fire season. The asset attributes during the year in which the 
equipment failure occurs are used to train the model. Thus, attributes like asset age and open 
maintenance tags, can be time varying and the asset attributes at the time of failure are directly used for 
training.  

• The model predictions are asset-based, so work plans can be prioritized by simply joining the model 
results based on the asset primary key. However, the asset-based results can be summed to the pixel 
level and used for pixel-based work planning if necessary. 

 
The support structures & transformers model subsets generally 
demonstrated good performance. Future work will focus on improving 
performance for the transformer equipment cause subset through 
additional covariate engineering and algorithm selection 
experimentation. The ROC performance plots for the four support 
structures & transformers subsets generated against predicted test 
event outages are shown to the right.  

 

 

 

Figure 25 – Support Structures & 
Transformers Subsets P(o) ROC Curves 
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Model subset covariates were initially chosen based on discussions with Subject Matter Experts regarding 
common equipment failure causal pathways. The covariate selections were then refined through an iterative 
experimentation process where model performance was used to define new covariate sets. Two methods of 
measuring covariate importance were used: permutation importance and Gini importance score. Feature 
permutation importance is defined as the average precision that is lost in the model performance when that 
feature's values are randomly shuffled around. The Gini importance score is specific to tree-based models, like 
Random Forest, and captures the helpfulness of the feature to the model by quantifying the feature’s influence 
on the tree splits. The resulting feature permutation scores for each model are included in the figures below. 

  

Figure 26 – Support Structure Subsets Covariates Permutation Importance 

 

  

Figure 27 – Transformers Subsets Covariates Permutation Importance 
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Asset characteristics were particularly important when modeling equipment failure events. Asset age was the 
most important feature in each of the equipment-failure models. Asset loading information was also a top 
feature for the pole structural failure model and the transformer failure model.  

 

For more detailed information on the support structures and transformers asset attribute modeling and 
covariate selection, see the appendix on Asset Time Series. 
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3.3.4 Predicting Probability of Ignition Given Outage – P(i|o) 

The prior sections have described how the P(o) is predicted for the 17 WDRM model subsets. The probability of 
an ignition given an outage model, or P(i|o), is used to determine the probability that an outage will result in an 
ignition event. By design, the P(i|o) model transforms our P(o) predictions into P(i) probability of ignition 
predictions.  

The WDRM predicts wildfire risk from all causes impacting all equipment types. To do so, it separates event data 
into subsets by cause, sub-cause, and equipment involved. Training predictive models directly on ignition event 
data for each subset is not feasible because several of the resulting subsets lack sufficient data to achieve 
statistical power. In other words, the models of the subsets lacking sufficient data would be incapable of 
distinguishing signal from noise and would generate unreliable predictions. Therefore, the WDRM first trains 
models on cause, sub-cause, and equipment involved subsets of outages, which are far more numerous that 
ignitions, to produce estimates of the probability of outages for each subset, P(o). A second model is used to 
estimate the probability of an ignition occurring from the circumstances that caused the outages. When 
multiplied together, these two probabilities produce the probability of an ignition:  

𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑃𝑃(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

The simplest formulation for the P(i|o) model would be to use the historical ratio of the count of ignitions to 
outages in each subset. Multiplying P(o) by that ratio would re-scale the P(o) data to the expected count of 
ignitions, but would preserve the spatial pattern, and thus rank order, found in the original P(o) result. The 
WDRM does not presume that the occurrence rate of ignitions, in both time and space, is a constant fraction of 
the outage occurrence rate. The heat maps below provide visual evidence that the locations most likely to 
experience ignitions are not identical to those most likely to experience outages.  

 

Figure 28 – Density Plots: Vegetation-Related Ignitions and Outages 

 

Reasoning from the observed conditions under which ignitions tend to occur and exploratory data analysis, the 
P(i|o) is fit using a predictive model that can account for event attributes and local environmental conditions. 
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The P(i|o) model is a logistic regression trained on all the outage event records in the target set, joined with 
information on cause, sub-cause, equipment involved, local vegetation, fuel moisture, and wind conditions at 
the time and location of each outage, augmented with a column of data indicating whether each outage was 
associated with an ignition. A few special cases for the dataset: 

• Ignitions without known outages are considered outages with ignitions 
• PSPS hazards and damages are considered outages with ignitions, down weighted to the historical 

occurrence rate of ignitions under PSPS conditions 
o There are more PSPS damages and hazards than would have occurred with the power on, so 

PSPS is down weighted to the historical occurrence rate of ignitions under PSPS conditions. 
Therefore, they only contribute the estimated avoided ignition count to the overall fit. 

o This number was estimated by calculating the sustained-outage-to-ignition rate (614 outages & 
47 reportable ignitions) during High Fire Danger Days (64 days) in HFTD between 2015-2018. 

The P(i|o) model is built to predict that, when given an outage, with all its known characteristics, what is the 
probability that an ignition would occur. 

The following table summarizes the spatial data sets available as covariates to the P(i|o) model. 

Table 8 – WDRM v3 P(i|o) Model Datasets 

Dataset Vintage Date 
Span Description 

HFTD 2018 n/a High Fire Threat District (HFTD) - produced by California Public Utilities 
Commission (CPUC) 

NED n/a n/a National Elevation Database (NED) - produced by United States Geological 
Survey (USGS) 

NLCD 2016 n/a National Land Cover Database (NLCD) - produced by United States 
Geological Survey (USGS) 

National 
Terrestrial 
Ecosystems 

2011 n/a The GAP/LANDFIRE National Terrestrial Ecosystems data represents a 
detailed vegetation and land cover classification for the Conterminous U.S., 
Alaska, Hawaii, and Puerto Rico - produced by the United States Geological 
Survey (USGS) 

PG&E 
Meteorology 

Jul-21 2010-
2020 

POMMS data used as inputs to, or the outputs of, the Fire Potential Index 
(FPI) model.  

Vegetation 
Satellite 

2019 2019 High resolution, territory-wide vegetation data - tree heights, density, etc - 
from Salo Sciences-processed satellite data. 

WorldPop 2010 - 
2020 

n/a WorldPop estimates number of people residing in each 100m grid cell 
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The Recursive Feature Elimination (RFE) implementation from scikit-learn was used to identify covariates that 
lack explanatory power for the P(i|o). The final model uses 27 covariates. 23 covariates are for differing ignition 
rates by model subset, and the remaining 4 covariates are related to ignition conditions: 

• Presence in a high fire threat district 
• Maximum wind speed at the outage location on the day it occurred 
• The least 10 hour dry fuel moisture on the day of the outage 
• 1000 hour dry fuel moisture on the day of the outage 

The resulting model can be used to estimate the P(i|o) from a given subset, in a specific location, for the 
weather and fuel conditions on the day of the outage. However, the WDRM v3 predicts typical fire season risk 
values. For compatibility with the WDRM, the P(i|o) model is used to predict daily values across multiple years 
of historic fire season weather and fuel conditions, with the daily estimates aggregated into seasonal 
predictions. The aggregation process weights each day’s contribution to the aggregate by its observed count of 
outages. In this way, the seasonal estimate automatically emphasizes the conditions associated with elevated 
outage rates, capturing their outsized importance in determining ignition probabilities. For example, the 
elevated rate of vegetation caused outages associated with late summer winds leads to those late summer 
conditions factoring more heavily into the seasonal P(i|o) for vegetation-caused outages. 

Using Od as the count of outages for a given day, we can express the logic of the marginalization across days as 
follows: 

𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛|𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) =  � 𝑂𝑂𝑑𝑑 ∙ 𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑=𝑑𝑑
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The figure below presents the feature importance for each covariate in the P(i|o) model fit. The prominence of 
subset terms underscores how important subset-specific ignition rates are to the prediction of probability of 
ignition. However, fuel moisture, location relative to the HFTDs, and wind speed are also in the top 10 most 
important features. 

 

 

 

 

 

  

Figure 29 – P(i|o) Covariate Importance 
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The ROC curve for out of sample predictive performance of the 
P(i|o) model is shown to the right. The curve and associated AUC 
value capture the skill with which the model assigns elevated 
ignition probabilities to outages that were associated with real 
ignitions. It can be verified by consulting the curve that the model 
does quite well, capturing nearly 80% of true ignitions after covering 
just 20% of the target set in rank order. 

 

 

 

 

 

 

 

  

Figure 30 – P(i|o) ROC Curve 
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3.3.5 Calculate Probability of Ignition – P(i) 

As described previously, the probability of ignition, P(i), is the product of the probability of outage, P(o), and the 
probability of ignition given outage, P(i|o). 

𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑃𝑃(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

P(i) is calculated for every distribution grid pixel and asset location for each of the 17 model subsets. The results 
are calibrated to match the predicted total number of ignition events that would be expected annually based on 
historical rates. 

The plots below show the ROC curves for P(i) for all the model subsets, with the exception for transform 
equipment leaking. Leaking transformers have not been historically associated with any ignitions, so P(i) cannot 
be determined for this subset. 

 

 

 

 

 

 

 

  

Figure 31 – P(i) ROC Curves 
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Several performance metrics are used to analyze the P(i) predictions. The table below presents the AUC, average 
precision, and top 20% concentration factors for the model subsets P(i) predictions. The average precision is the 
concentration of ignitions per ranked location up through all ignitions being accounted for. The concentration 
factor, used to understand model performance for highly ranked predictions, measures the concentration of 
true positives in the top 20% of predictions as a multiplicative factor compared to random chance. Improving 
model concentration factor can yield significant gains in the risk performance of resources budgeted for 
mitigation programs. 

Table 9 – Model Subset Performance, Ranked by AUC 

Subset P(i) 
AUC 

P(i) 
Precision 

Top 20% 
Conc. 
Factor 

Outage 
Count 

Ignition 
Count 

animal_squirrel 0.889 0.0011 4.000 3,694 40 
support_structure_equipment_electrical 0.868 0.0047 3.896 2,096 582 
voltage_control_equipment_type 0.857 0.0012 3.690 502 99 
vegetation_trunk 0.851 0.0016 3.693 4,388 329 
third_party_balloon 0.813 0.0009 3.389 2,127 103 
vegetation_branch 0.775 0.0009 2.775 6,912 406 
vegetation_other 0.755 0.0006 2.622 1,655 184 
animal_other 0.742 0.0009 2.528 834 106 
third_party_vehicle 0.725 0.0009 2.407 6,952 265 
animal_bird 0.703 0.0003 2.360 4,831 219 
primary_conductor 0.702 0.0023 2.334 12,343 974 
other_equipment_type 0.670 0.0005 2.321 46,981 316 
support_structure_equipment_cause 0.664 0.0000 2.126 4,631 194 
secondary_conductor 0.663 0.0014 2.053 3,801 216 
third_party_other 0.636 0.0010 1.867 2,202 102 
transformer_equipment_cause 0.541 0.0000 1.023 8,809 62 
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It is often informative to view P(i) on color-coded maps of the distribution grid. Viewing the model subsets, we 
can easily see differences in risk patterns. Some interesting examples are shown on the following pages. 

  

Figure 32 – Bay Area P(i), Bird vs. Squirrel 

Bird events are more widely distributed but concentrated along the bay shore and other bird habitat and 
migratory routes. 

  

 

Branch failures extend more consistently into suburban and urban areas while trunk failures are most likely in 
heavily forested areas. 

Figure 33 – Sierra Foothills P(i), Vegetation Branch vs. Trunk 
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Figure 34 – Bay Area P(i), Balloon vs. Vehicle 

The probability of balloon ignition events is, as expected, highly concentrated in densely settled areas. Vehicle 
ignition events are more likely transportation corridors rather than in urban core areas. 

  

 

Voltage control device probabilities of ignition driven by line characteristics and are spatially heterogeneous, 
with some pockets of high concentration. Primary conductor ignitions are more common in Sierra foothill and in 
urban centers.  

Figure 35 – Sierra Foothills P(i), Voltage Control Devices vs. Primary Conductors 
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3.4 CoRE – Consequence Value 

The v2 consequence model drew upon Tecnosylva simulations of acres burned, structures impacted, flame 
length and rate of spread returned (with flame length and rate of spread combined into a 1-5 Fire Behavior 
Index, called FBI), and then determining fire severity via thresholds of those values for every day of weather 
simulated. The daily severity for each simulation location was assigned a consequence consistent with MAVF 
CoRE. Final consequence values were determined as averages over all simulation days for each location. 

The v3 consequence model draws upon 4 sources of data: the same physical outputs from 2021 updated 
simulations from Tecnosylva, satellite detected fires from VIIRS (infrared satellite), CalFire data on fire outcomes 
correlated to VIIRS fires (used to assign MAVF CoRE values), and daily estimates of the 1-5 scaled R-score 
produced for every 2x2km square in the territory on a daily basis by the models behind PSPS events. For v3, fire 
severity for a given day is assessed for destructive potential for all days in the June through November fire 
season. If either approach evaluates to destructive potential, the day/location is considered to have 
consequences consistent with the expectation value of MAVF CoRE assigned to destructive fires from the VIIRS 
data set. The use of FPI R-score in addition to the Tecnosylva simulations allows for the marginalization of 
consequence values across the entire fire season, not just the worst weather days approach used by Tecnosylva. 

3.4.1 Overview Diagram 

 

 

3.4.2 The relationship between asset location conditions and fire potential 

Historic fires from the VIIRS data are combined with CalFire and other agency data on outcomes (buildings 
burned, acres burned, fatalities) to produce MAVf CoRE consequences for historic fires. The available data is 
joined to Tecnosylva WRRM 8hr simulations and to FPI R-score for all times and locations. 

The relationship between the Tecnosylva WRRM simulations and the historic data on destructive fires is 
illustrated below. 

WMP-Discovery2023_DR_OEIS_001-Q007Atch01



47 
 

Internal  

 

Figure 36 – Tecnosylva Simulation and Destructive Fire Relationship 

 

The relationship between the FPI R-score and the historic fire data was examined as well. 

 

Figure 37 – FPI R-score and Destructive Fire Relationship 

 

 

Analysis of the historic fire data led to the discovery of a partition function, shown 
to the right, that is used as a classifier. When the conditions for this classifier are 
met, then a potentially destructive fire is predicted. Conversely, non-destructive 
potential is predicted when the classifier conditions are not met. Each of the 
predicted destructive/non-destructive outcomes has an associated mean MAVf 
CoRE consequence from the observed, historic outcomes. Predicted destructive 
potential/non-destructive potential are computed both inside and outside the 
HFRA to complete the partition. 

 
Figure 38 – Destructive 

Potential Classifier 
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Using the classifier described above and the starting locations of 
historical fires, the mean MAVf was determined for a matrix of HFRA 
designation and the destructive potential prediction for each historical 
fire location.  

 

 

 

 

3.4.3 Assigning grid pixel CoRE values from destructive potential classification  

To project current CoRE consequences the covariates are computed for as many pixels as possible. FPI R scores 
are computed for all times and most pixels. Tecnosylva fire simulations are computed for worst condition days 
and at roughly 200m intervals along the locations of grid assets. However, Tecnosylva does not produce 
simulations in locations where it is believed that that a wildfire cannot be sustained such as urban, industrial, 
and agricultural areas. 

For each day in the fire season, the FPI R-score and Tecnosylva simulation results are classified for each pixel as 
shown in Figure 14 – Destructive Potential Classifier. From the pixel destructive potential classification, the 
appropriate CoRE value is assigned from Table 5 – WFC FPI Model. The final CoRE value for each pixel is the 
aggregate of the daily CoRE values. 

 

3.4.4 Assigning backstop CoRE values for unclassified pixels 

As noted, some locations have Not Available (NA) for their predicted destructive potential. Overwhelmingly, by a 
ratio of 100:1, Not Available pixel results are in non-HFRA locations. Tecnosylva simulations are absent for 
reasons such as the simulation point is too far from a specific pixel or a simulation point is considered 
‘unburnable’ due to physical characteristics such as urban or agricultural settings. 

 

An analysis determined that historic fires outside the HFRA area 
where Tecnosylva declined to simulate are similar to non-
destructive fires outside the HFRA where simulations were 
performed. Therefore, outside the HFRA, when destructive fire 
potential is Not Available, the WDRM uses CoRE from the mean 
MAVf of historic fires outside of HFRA.  

Inside the HFRA, no value of CoRE is assigned to pixels with Not Available predictions because the reasons for 
missing a simulation point are divergent. This missing value could be the result of a location that is considered 
unburnable and Tecnosylva therefore declined to simulate an ignition at that location. It could be that the pixel 

Table 10 – WFC FPI Model 

HFRA 
Predicted 

Destructive 
Potential 

CoRE from 
mean MAVf of 
historic fires 

True True 267 

True False 1.15 

False True 0.195 

False False 0.0670 

Table 11 – WFC FPI Model Backstop 
Values 

HFRA 
Predicted 

Destructive 
Potential 

CoRE from 
mean MAVf of 
historic fires 

True NA NA 

False NA 0.0670 
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is too far from the nearest asset location simulation point, as the grid provided by Tecnosylva is irregular. 
Therefore, the WDRM always retains Not Available results for the CoRE for HFRA pixels. Less than 0.1% of all 
HFRA pixels have a Not Available value. 

3.4.5 WDRM v3 Consequence pixel map 

Figure 17 provides a color-coded map of the fire season average 
Consequence value. For WDRM v3, the high consequence values 
are typically found in the foothill regions of the distribution grid. 

 

  

Figure 39 – WDRM v3 Consequence Map 
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3.5 Wildfire Risk Scores 

For each grid pixel along the overhead distribution system, the WDRM assigns a wildfire risk score based upon 
the product of probability of ignition, P(i), or LoRE and consequence, or CoRE. The principal output of the WDRM 
is an assigned wildfire risk score for each grid pixel for each model subset. The subset-level grid pixel risk values 
can be summed across subsets to compute composite risk values for specific mitigation programs. Grid pixel risk 
values can also be aggregated with their associated circuit segments to deliver circuit segment risk values. These 
computations are described in the following sections. 

3.5.1 Pixel Wildfire Risk Score 

For each pixel in each model subset, the pixel probability of ignition, P(i), is multiplied by the its consequence 
value to determine the final wildfire risk value.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (= 𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

For any pixels that are missing either its P(i) or consequence value, the resulting wildfire risk value will be 
missing. Missing risk values are rare but can happen due to small gaps in covariate or fire simulation spatial 
coverage. 

3.5.2 Compositing Wildfire Risk Scores 

Ultimately, the purpose for the WDRM is to inform the prioritization of work planning for risk mitigation 
programs. The WDRM model subsets can be flexibly composited to provide risk values and priority rankings for 
specific mitigation programs. Risk can be composited for grid pixels or for specific assets. Mitigation planners 
and Subject Matter Experts can focus on the drivers of risk for which they are responsible with confidence that 
their composited view is relevant to their work planning needs. The ability to build custom composites of risk is 
a key improvement of WDRM v3 over prior versions. The following figure provides a visual explanation of 
compositing. 

 

Figure 40 – Compositing Model Subset Risk 

 

WDRM v3 composites can be specified to support specific mitigation strategies. Directly supported mitigation 
programs include: 

• System Hardening 
• Enhanced Vegetation Management (EVM) 
• Support Structures 
• Transformers 
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The following table provides examples of how compositing has been done for two mitigation programs, EVM 
and System Hardening.  

Table 12 – EVM and System Hardening Compositing 

Subset Total 
Pixels EVM System 

Hardening 
Vegetation subsets    

Vegetation (trunk) caused 1,418,832 Info X 
Vegetation (branch) caused 1,418,832 X X 
Vegetation (other) caused 1,418,832 Info X 

Animal subsets    
Animal bird 1,366,059  X 
Animal squirrel 1,366,059  X 
Animal other 1,366,059  X 

Third party subsets    
Third party vehicle 1,366,059  X 
Third party balloon 1,366,059  X 
Third party other 1,366,059  X 

Conductor and other equipment subsets    

Primary conductor 1,366,059  X 
Secondary conductor 408,846  X 
Other equipment type 1,366,059  X 
Voltage control equipment  1,366,059  X 

Support structure subsets     

Support structure – equipment caused 1,211,592  X 
Transformer subset    

Transformer – equipment caused 540,457  X 
 

Note that many model subsets have different pixel counts. This is for two reasons. First, many assets types are 
covered by a fraction of the total pixels for the distribution grid. Second, in some cases there are small gaps in 
covariate coverages for some model subsets. 

EVM, while primarily interested in branch-related risk for planning purposes, composites other vegetation 
causes for informational reasons. 
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The figure to the right is a map of the 
wildfire risk values for the System 
Hardening composite. Interestingly, the 
composite risk is more strongly influenced 
by consequence values than probability of 
ignition. Intuitively, this is because the 
potential for a catastrophic wildfire at a 
location is of much higher magnitude that 
the likelihood of an ignition occurring at 
the location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.3 Circuit Segment Risk Aggregation 

Model subset and composite level grid pixel information can be too fine grained for effective planning. Some 
mitigation programs prefer to consider risk by circuit segments, where a segment is composed of all assets 
protected by a dynamic protective device on the grid. The pixels that correspond to each circuit segment can 
have their values rolled up into circuit segment aggregates that can then be ranked by probability of ignition, 
consequence value, or wildfire risk as inputs into a mitigation planning process. 

  

Figure 41 – System Hardening 
Composite Risk 
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3.6 Wildfire Risk Mitigation 

Estimating the potential reduction in ignition events, and therefore future wildfire risk from various wildfire 
mitigation programs was a key objective of the WDRM v3. Mitigation programs such as System Hardening, and 
Enhanced Vegetation Management (EVM) are conducted to reduce wildfire risk. Mitigation programs address 
the LoRE, or P(i), component of wildfire risk. The program goals are to reduce the likelihood of future grid 
outages and failures which can lead to ignition events and potentially catastrophic wildfires.  

A well-defined procedure to estimate the potential reduction in wildfire risk from PG&E mitigation program 
activities is vital for prioritization for work plans. Risk reduction estimates inform the comparison between 
alternate mitigation strategies and programs and help to optimize work planning and allocation of mitigation 
resources for systemic risk reduction. 

WDRM v3 addresses four mitigation programs: 

• System Hardening  
• Enhanced Vegetation Management (EVM) 
• Pole Replacement Prioritization 
• Transformer Replacement Prioritization 

 
Mitigation values are provided at a pixel level as a residual expectation of ignition after applying a specific 
mitigation action. The residual ignition value can be multiplied by the CoRE, or Consequence, value, to 
determine the expected future wildfire risk value. 

The WDRM mitigation calculations have some limitations: 

• v3 only considers one year of mitigation efforts 
o Mitigations vary in timeframe effectiveness 

 System Hardening effectiveness degrades slowly over decades 
 EVM effectiveness may only last a few years as vegetation grows back quickly 

• Mitigation effectiveness does not currently consider costs in v3 
o Proposed improvement is to include some form of Net Present Value (NPV) for a future version 

 

3.6.1 System Hardening Mitigation Effectiveness Factors  

System Hardening Subject Matter Experts (SMEs) were consulted to understand how to implement mitigation 
calculations for WDRM v3. The SMEs estimated the effectiveness of 4700 historical failure modes. Each failure 
mode was defined by four characteristics: 

• Outage cause 
• Supplemental cause 
• Equipment involved 
• Equipment condition 
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Each failure mode corresponded with one or more failures as found in historical records from 2015 through 
2019. The SMEs provided categorical mitigation effectiveness for each failure mode The SMEs subsequently 
assigned numeric effectiveness values for each category: 

Table 13 – System Hardening Categorical Mitigation Effectiveness Estimates 

Effectiveness 
Category 

Effectiveness 
Estimate 

None 0.00 
Low 0.20 
Medium 0.40 
High 0.75 
All 0.90 

 

The System Hardening mitigation effectiveness for each subset is the weighted average over the failure modes,  

𝜁𝜁𝑆𝑆 =
∑ 𝑁𝑁𝑆𝑆,𝑚𝑚𝑚𝑚 × 𝜁𝜁𝑚𝑚

∑ 𝑁𝑁𝑆𝑆,𝑚𝑚𝑚𝑚
 

Where: 

  𝑁𝑁𝑆𝑆
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∶  total failure events in subset S  

ζ𝑚𝑚 :  SH effectiveness in mitigating failure mode 𝑚𝑚 
𝑁𝑁𝑆𝑆,𝑚𝑚 :  number of outages in 𝑆𝑆 matching failure mode 𝑚𝑚 

NOTE: Typically, ∑ 𝑁𝑁𝑆𝑆,𝑚𝑚𝑚𝑚 =  𝑁𝑁𝑆𝑆
𝑒𝑒𝑒𝑒𝑒𝑒.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  ≤  𝑁𝑁𝑆𝑆

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  since not all failures have corresponding effectiveness estimates, 
either due to uncertain labels, or due to being notifications. 

The above calculation produces the following effectiveness factors for the System Hardening subsets: 

Table 14 – System Hardening Mitigation Effectiveness 

Subset Outage 
Count 

Ignition 
Count 

Mitigation 
Effectiveness 

animal_bird 4831 219 0.663 
animal_other 834 106 0.705 
animal_squirrel 3694 40 0.662 
other_equipment_type 46981 316 0.370 
primary_conductor 12343 974 0.461 
secondary_conductor 3801 216 0.524 
support_structure_equipment_cause 4631 194 0.779 
third_party_balloon 2127 103 0.794 
third_party_other 2202 102 0.418 
third_party_vehicle 6952 265 0.482 
transformer_equipment_cause 8809 62 0.726 
vegetation_branch 6912 406 0.552 
vegetation_other 1655 184 0.541 
vegetation_trunk 4388 329 0.333 
voltage_control_equipment_type 502 99 0.150 
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3.6.2 EVM Mitigation Effectiveness Factors 

 
The mitigation effectiveness factors for EVM subsets were directly provided by the relevant SMEs as fixed 
values. Whereas the effectiveness of EVM is often a complex consideration of the grid equipment, tree species 
mix, natural environment, and local climate, for the purposes of identifying the potential risk reduction due to 
EVM, the SME provided values are considered useful. 
 
The EVM mitigation effectiveness factors used for WDRM v3:  
 

Table 15 – EVM Mitigation Effectiveness 

Subset Outage 
Count 

Ignition 
Count 

Mitigation 
Effectiveness 

vegetation_branch 6912 406 0.85 

vegetation_other 1655 184 0.60 

vegetation_trunk 4388 329 0.50 

 

 
3.6.3 Transformer Replacement Mitigation Effectiveness Factors 

The transformer replacement mitigation effectiveness factors were developed in collaboration with transformer 
replacement SMEs and were applied to the transformer_equipment_cause subset. The calculation procedure 
requires first estimating a base effectiveness value informed by the failure rate of low-risk, young transformers. 
This base effectiveness value is modified by SME-provided asset attribute specific multipliers for higher-risk, 
older transformers.  

The base efficacy value 𝜁𝜁𝑏𝑏 evaluates to 0.28 as the numerical solution of the following equation: 

𝜁𝜁𝑏𝑏 =  1 −  
𝑟𝑟𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎
∗ � � 𝑓𝑓𝑝𝑝

𝑝𝑝∈{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}

∗
1 − 𝜁𝜁𝑏𝑏

1 − 𝑥𝑥𝑝𝑝 ∗ 𝜁𝜁𝑏𝑏
� 

The following multipliers were established by the transformer replacement SMEs: 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  �1   𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏
1.2 𝑏𝑏𝑏𝑏𝑏𝑏        

 

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧1   0 − 100%     

1.1 100 − 150%
1.2 150 − 200%
1.3 200 − 300%
1.4 > 300%        

 

 

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �
1      0.00 − 0.25
1.05 0.25 − 0.50
1.1  0.50 − 0.75
1.2  0.75 − 1.00

 

 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �1   ≥ 2012
1.1 < 2012 

The following formula was used to calculate the effectiveness values 40 potential multiplier combinations: 
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𝜁𝜁 =  𝜁𝜁𝑏𝑏 ∗ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

3.6.4 Pole Replacement Mitigation Effectiveness Factors 

The support_structure_equipment_cause model subset was used for prioritizing pole replacement work 
planning. The pole replacement mitigation program is aimed at replacing poles identified from an inspections 
process as structurally deficient. The pole replacement mitigation effectiveness factor was estimated from the 
annual failure rate of previously replaced poles and the pole failure model’s weighting of pole replacement-
related features. This mitigation effectiveness estimation approach is called the Similarity Method.  

These pole replacement-related covariates include, 

• pole age  
• loading percent at Mcu  
• prior year open tag count (for B, E, F, & H tags) 
• number of years since last invasive PT&T inspection 

Each of these covariates can be set to zero in the model after a pole has been replaced. Since these covariates 
are highly influential on probability of outage, the WDRM predicts a significantly reduced likelihood of failure 
upon replacement.  

Initially, the Similarity Method buckets the population of poles into groups based on the above features. The 
categorical buckets used to group the pole population are: 

• Age 
o 0-40 years 
o >40 years 

• Percent at Mcu 
o <=31% 
o Unknown 
o >31% 

• Open tag in prior year 
o True 
o False 

• Years since last PT&T inspection 
o 0-4 
o >4 

 

Each of the deficient pole categorical groups are compared to the ideal young & healthy pole group. The ideal 
young & health pole is less than 40-years-old, with zero maintenance tags in the prior year, with a PT&T 
inspection within the last 4 years, and estimated at less than 31% of the Mcu. A recently replaced pole always 
falls into this young & healthy group. The effectiveness factor, 𝜁𝜁, of pole replacement is calculated as: 

𝜁𝜁 = 1 −  
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
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The following table provides the mitigation effectiveness factors for replacing poles with different deficiencies as 
characterized in the list of categorical buckets. Note that the first that the first row in the table represents the 
ideal and healthy young pole. 

Table 16 – Pole Replacement Effectiveness 

Age 
(years) 

Percent 
at Mcu 

Open Tag, 
Prior Year 

Last PT&T 
Inspection 

(years) 

Replacement 
Effectiveness 

0-40 <= 31% False 0-4 0 
0-40 <= 31% False 4+ 0.054041 
0-40 <= 31% True 0-4 0.292436 
0-40 <= 31% True 4+ 0.350737 
0-40 unknown False 0-4 0.279867 
0-40 unknown False 4+ 0.376295 
0-40 unknown True 0-4 0.513729 
0-40 unknown True 4+ 0.583575 
0-40 > 31% False 0-4 0.413562 
0-40 > 31% False 4+ 0.449270 
0-40 > 31% True 0-4 0.554744 
0-40 > 31% True 4+ 0.587601 
40+ <= 31% False 0-4 0.600210 
40+ <= 31% False 4+ 0.627793 
40+ <= 31% True 0-4 0.719409 
40+ <= 31% True 4+ 0.750524 
40+ unknown False 0-4 0.723916 
40+ unknown False 4+ 0.749747 
40+ unknown True 0-4 0.804098 
40+ unknown True 4+ 0.830226 
40+ > 31% False 0-4 0.787688 
40+ > 31% False 4+ 0.805365 
40+ > 31% True 0-4 0.825908 
40+ > 31% True 4+ 0.847246 
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4 Results and Model Performance 
4.1 WDRM v3 Performance 

Subset-level model predictions produced AUCs ranging up to 0.88 (animal squirrel), with 5 subsets higher than 
0.80, 6 subsets between 0.70 and 0.80, 4 subsets between 0.63 and 0.70, and transformer_equipment_cause 
and transformer_equipment_leaking at 0.54 and one without any ignitions for establishing truth respectively. 
The full dataset that trained the overall model (i.e., “all modeled subsets”) achieved an AUC score of 0.70. With 
full territory coverage and events associated with all causes and equipment types, this result is for a much more 
extensive model than presented in v2. 

Model Performance: subset-level P(outage) and P(ignition) 

Table 9 provides ROC-AUC values for P(outage) predicting outages (the immediate job of the subset models), 
and ROC-AUC, average precision, and the top 20% ranked predictions ignition concentration factors for 
P(ignition) predicting ignitions (the goal of the WDRM) for all modeled subsets. It is sorted from highest to 
lowest for P(ignition) predicting ignitions AUC, with color scales shared by both AUC metrics for reference. Note 
that the leaking transformer subset has no historical ignitions and therefore lacks ground truth for computing 
these performance metrics. 

Table 17 – Color Coded Subset Prediction Performance 

Subset P(o) 
AUC 

P(i) 
AUC 

P(i) 
Precision 

P(i) Top 
20% Conc. 

Factor 
animal_squirrel 0.882 0.889 0.00112 4.000 

support_structure_equipment_electrical 0.838 0.868 0.00472 3.896 

voltage_control_equipment_type 0.882 0.857 0.00117 3.690 
vegetation_trunk 0.867 0.851 0.00160 3.693 
third_party_balloon 0.892 0.813 0.00091 3.389 
vegetation_branch 0.831 0.775 0.00090 2.775 
vegetation_other 0.839 0.755 0.00055 2.622 
animal_other 0.770 0.742 0.00088 2.528 
third_party_vehicle 0.765 0.725 0.00093 2.407 
animal_bird 0.744 0.703 0.00030 2.360 
primary_conductor 0.735 0.702 0.00229 2.334 
other_equipment_type 0.755 0.670 0.00045 2.321 

support_structure_equipment_cause 0.738 0.664 0.00002 2.126 

secondary_conductor 0.706 0.663 0.00139 2.053 
third_party_other 0.713 0.636 0.00101 1.867 
transformer_equipment_cause 0.632 0.541 0.00002 1.023 
transformer_equipment_leaking 0.749 NA NA NA 

 

Model Performance: P(ignition|outage) 

When working with P(outage) results directly, without the correction provided by P(ignition|outage) model, the 
implicit assumption is that P(ignition) will follow the same temporal and spatial patterns as P(outage), i.e. 
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rescaled to account for the lower count of ignitions annually. The net impact of the use of the P(ignition|outage) 
model can therefore be assessed via a comparison of predictions between P(outage) and P(ignition) for each 
subset. As illustrated below, the p(i) estimate’s out of sample AUC score is higher or neutral for all but 3 subsets. 
Just a single subset, support_structure_equipment_cause, is significantly worse at predicting ignition locations 
after the p(i|o) correction. This is presumably because the vast majority of support structure ignitions stay on 
the poles, rendering the vegetation and fuel conditions on the ground (data consumed by and found generally 
predictive for the p(ignition|outage) model) moot.  

Table 18 – Predictive ROC-AUC Performance Gain from P(i|o) 

Subset P(o) 
AUC 

P(i) 
AUC 

P(o) Top 
20% 
Conc. 
Factor 

P(i) Top 
20% Conc. 

Factor 
Differential 

animal_bird 0.666 0.703 2.02 2.36 0.037 
animal_other 0.718 0.742 2.53 2.53 0.024 
secondary_conductor 0.643 0.663 1.92 2.05 0.020 
third_party_vehicle 0.707 0.725 2.24 2.41 0.017 
primary_conductor 0.689 0.702 2.13 2.33 0.013 
vegetation_branch 0.762 0.775 2.58 2.77 0.013 
third_party_balloon 0.800 0.813 3.33 3.39 0.013 
animal_squirrel 0.876 0.889 3.71 4.00 0.012 
transformer_equipment_cause 0.529 0.541 1.02 1.02 0.012 
vegetation_trunk 0.843 0.851 3.66 3.69 0.008 
third_party_other 0.630 0.636 1.81 1.87 0.006 
vegetation_other 0.751 0.755 2.59 2.62 0.005 
voltage_control_equipment_type 0.854 0.857 3.75 3.69 0.003 
transformer_equipment_leaking 0.000 0.000 NaN NaN 0.000 
support_structure_equipment_electrical 0.872 0.868 3.98 3.90 -0.004 
other_equipment_type 0.675 0.670 2.21 2.32 -0.005 
support_structure_equipment_cause 0.687 0.664 2.41 2.13 -0.023 

 

4.1.1 WDRM v2 vs. v3 comparisons  

Due to changes in the categories of events modeled, the geographic territory covered and circuit segment name 
and topology changes, there is no direct comparison between v2 and v3, the closest comparison is a comparison 
of the vegetation models. In v2 of the WDRM, the vegetation model had an overall AUC score of 0.73, while this 
year’s model (which models trunks, branches, and other separately) improves over the v2 performance, with an 
AUC score for the vegetation composite of 0.78. The v2 conductor-involved events (AUC 0.73) were largely 
vegetation caused (v3 composite AUC score of 0.78), but also drew upon conductor equipment events (v3 AUC 
of 0.70). 

Nevertheless, if the resulting HFTD circuit segment prioritization for the System Hardening composite from the 
v2 and v3 model are compared, the movement of circuit segments can be observed. The Sankey chart below 
displays movement between the top two quartiles and the lower 50% from the v2 model on the left to the v3 
model on the right.  The following observations are made which correspond to flows on the Sankey chart: 
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1. 25% of v3 1st and 2nd quartile circuit segments are new and were not present in the v2 model 
2. The majority of new v3 circuit segments are ranked in the lower half in the v3 model 
3. Approximately 1/3 of v2 1st and 2nd quartile circuit segments move to the lower 50% 

 

 

Figure 42 – Sankey View System Hardening Circuit Segment Risk, v2 vs. v3  

In most cases, the central cause of decreased risk was updated consequence values, however, the following 
causes were also found to play a role: 

1) Geometry changes including addition, subtraction, and the splitting of the CPZ into two or more distinct 
circuit segments in v3 

2) Name changes including the absorption of CPZs into others resulting in the original CPZ no longer 
existing 

3) The handling of CPZs that were partially included in high fire threat districts. In v2, the total risk was 
found by only summing those risk pixels belonging to the CPZ whose centroid was within the HFTD while 
in v3, all pixel risks belonging to the CPZ were summed regardless of HFTD inclusion. 

As most work plans prioritize the top 20% of circuit segments, risk changes were studied for those circuit 
segments which were in the top 20% of risk in v2 but had dropped out of the top 20% in v3. As shown in Figure 
38 below, of the 727 circuit segments in the top 20% of v2 risk, 88 were absorbed into another circuit segment 
name and another 68 were less than 1km long. Of the remaining 571 circuit segments, 208 remained in the v3 
top 20% (or top 1,000). Of the top 727 circuit segments in the v2 top 20%, 363 dropped to the lower 80%.  From 
among these, most of these moves (343) were dominated by a large shift in the wildfire consequence value and 
rank. A small portion of these moves (12) were influenced by both a large shift in the circuit segment mileage 
and wildfire consequence. Finally, eight circuit segments moved due to a shift in the ignition probability and 
were minimally influenced by wildfire consequence or a change in length. 

3 

3 

2 

1 

1 
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Figure 43 – v2 Top 20% Breakdown by Segment 

 

A few examples of these movements are illustrative:  

 

Figure 44 – Santa Ynex 1104CB: Large Consequence Change, Small Mileage Change 
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Figure 45 – Poso Mountain 2103CB: Small Consequence Change, Large Mileage Change 

 

Figure 46 – WDRM Risk Drivers, v2 vs. v3 

 

4.1.2 Power System Specialists (PSS) Review 

PG&E Power System Specialists (PSS) developed a circuit-based risk assessment review. This qualitative 
assessment is based on their collective 300+ years of fire experience as most of the PSS had a previous career in 
fire with CalFire or other Fire agencies. The PSS assessment assigned a qualitative score of 0, 5, 15, or 30 for five 
categories focused not on ignition probabilities but factors that will contribute to the ability to manage a fire 
given their unique history in fighting fires in these locations. These categories were: Fire History, Ingress/Egress 
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Impacts, Resistance to Control, 
Community Risk Factors, and Other 
Unique Local Factors. These five 
values are then combined to 
achieve a total value for all circuits 
in the HFTD and HFRA.  

These qualitative values were 
compared with the System 
Hardening Risk Composite scores 
by assembling the PSS assessment 
along the WDRM v3 risk buy-down 
curve. As circuits with higher PSS 
values tend toward the upper end 
of the risk buy-down curve the PSS 
assessment and WDRM v3 
correlate particularly in the first half of the curve. 

 

4.1.3 E3 Review 

An independent, third-party review of the WDRM v3 was conducted by E3 – Energy, Environment and 
Economics. The objective of the review was three-fold: 

• Review the suitability and applications of consequence data in the modelling framework,  
• Review the specific use of the Risk Model Information in each of its operations areas; and,  
• Describe potential future uses of v3 and longer-term multi-year wildfire planning models.  

 
This was a deliberate expansion of the objective for the E3 review of the WDRM v2 model which was to 
determine whether the model was ‘fit for purpose’.  
 
As result of the review E3 concluded the following:  
 
“PG&E has made substantial progress in transforming its model from one that was primarily used to validate 
mitigation measures chosen by its subject matter experts (SME) within high fire zone areas to a model that can 
be used to supplement and prioritize the targeting of mitigation measures across its entire service territory.” The 
“construct of v3 appears to be consistent with their commitment in their WMP to refocus mitigation work to 
achieve a target where 80 percent of their work is focused on mitigating the risk of the highest 20 percent of 
identified line segments.”  
 
“PG&E has made a substantial effort to incorporate feedback from the CPUC, stakeholders, E3 and its internal 
users to update the WDRM between versions 2 and 3. The updates made represent real improvements in several 
critical areas. From E3’s review, the modeling team includes a group of highly skilled professionals from inside 
and outside of PG&E. The model is leveraging the best available data and methods to prioritize risk levels by 
geographic area and ignition type allowing for evidence-based decision-making. This model represents an 
improvement from v2…Most of modeling limitations are driven by limitations in data and resources which 
are difficult for the modeling team to directly solve.” 
 

Figure 47 – HFRA WDRM v3 System Hardening Risk Buydown 
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In line with the third objective to ‘Describe potential future uses of v3 and longer-term multi-year wildfire 
planning models’, E3 identified a number of items for future improvement of the WDRM in future iterations.  
 
“While PG&E should be commended for its rapid development of a model that shows substantial promise to 
increase the effectiveness of their mitigation work, our recommendations focus on a few existing gaps: 

• Standardizing and documenting the relationship between the model and subject matter experts  
• The transparency and validity of the consequence portion of the model  
• Establishing a data quality control process  
• Establishing a roadmap for model direction  
• Exploring potential further use cases of the model  
• Coordination of PG&E’s process with broader State-wide wildfire planning” 

 

E3 also assessed PG&E’s progress on the 11 recommendations from the WDRM v2 validation report. E3 found 
that the WDRM v3 completely addressed 8 of these recommendations and made progress on the remaining 3. 
These three, a more detailed modeling roadmap, tighter coordination with SME input, and transparency of the 
Wildfire Consequence data, are highlighted in the WDRM v3 validation report for continued progress. The 
detailed table of  

For more information, please see the complete E3 validation report in Appendix X 

4.1.4 Wildfire Governance Steering Committee Review 

The WDRM v3 was presented for review and approval to the Wildfire Risk Governance Steering Committee 
(WRGSC) on two occasions. The first occasion was to document the development of model features that were 
2021 Wildfire Mitigation Plan (WMP) commitments and approve a new annual model development schedule 
and the second was to review and approve the WDRM v3 for use in developing wildfire mitigation work plans. 

On December 15, 2021, the first presentation was made to the WRGSC. The objective of this presentation was to 
1) Inform the committee of the improvements made to the WDRM v3 and 2) To approve the future model 
development schedule. As part of the reported improvements 6 features were detailed that met WMP 
commitments. These were:  

1. Model extends beyond HFTD to entire distribution system 
2. Added models for support structures and transformers 
3. Updated training data sets with 2020 outages, ignitions and PSPS damages 
4. Developed models to composite or add probabilities and risks 
5. Automation of composite model framework (CPUC Recommendation 
6. Risk reduction for mitigation options at a granular level  

In addition, the development of four features recommended in the E3 Validation report were presented: 

1. Develop and evaluate wider range of model algorithms 
2. Improve coordination between PSPS Operational and WDRM Planning Models 
3. Include model parameters that relate more closely to risk mitigation measures 
4. Strengthen link between experts and models 

Supporting these 10 added features, improvements on data sets such as historic weather, LiDAR tree survey 
data and pole loading calculations were presented. 
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The annual model development schedule was all presented and approved. In order to provide improved 
continuity for work plan execution, the new schedule proposed a phased approach for model application. As 
shown in Figure 3, after a model is approved at the end of the first quarter, work plans with shorter 
implementation cycles could begin to use the model while longer term work would look to apply the new model 
to plan work for the next year and beyond. 

As a result of the meeting the new features were documented, and the model development schedule was 
approved. 

The second presentation of WDRM v3 to the WRGSC was held on April 13, 2022 for the purpose of approving 
the updated WDRM v3 for use in work planning. Originally, the meeting was scheduled for March 30, 2022, in 
compliance with the commitment to develop the final WDRM v3 model by the end of Q1 2022. Due to a lack of 
quorum from the voting members of the committee, the original meeting was postponed, and the WDRM v3 
was approved by the WRGSC on April 13, 2022. 

As a result of the meeting, the WDRM v3 was approved with a number of follow-up items. 
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5 WDRM Future Plans 
A model that attempts to predict the future, in an inherently chaotic system like that of PG&E’s energy system in 
the California environment, can always be improved. New data becomes available and new data science tools 
and techniques are developed. Even simply the availability of staff time to invest in data quality, model design, 
and tuning of hyperparameters – all while utilizing existing data and tools - can produce improvements in 
prediction quality and applicability to PG&E risk mitigation programs.  

PG&E plans to continue to improve the WDRM over the coming years. The next iteration of the model, v4, which 
is planned to be developed during 2022, will include: 

• Modeling related to additional assets, including capacitor banks, fuses and voltage regulators 
• Modeling of additional causes of outages and ignitions, such as those caused by animals, third-party 

interactions, and lightning 
• Modeling how long it takes for fire suppression to get into a wildfire area (ingress) and how long it takes 

residents and workers to evacuate an area (egress) 
• Standardizing and documenting the relationship between the model and subject matter experts  
• Establishing a data quality control process  
• Expanding the current roadmap for model direction  
• The ability to account for the effects on EPSS (protective device settings that make them more likely to 

trigger protective outages under fire conditions).  
• Improve the ability of model algorithms to specify the circumstances under which specified mitigations 

are applicable. This will enable a more precise application of mitigation effectiveness factors. 
 

PG&E plans to incorporate the following into WDRM v5, which may be developed in 2023-2024: 

• Modeling of additional assets such as distribution protection devices 
• Modeling of outages and ignitions with unknown causes  

PG&E is planning to incorporate the following in the WDRM v6: 

• Understanding other challenges in the area, such as from seismic risk so that work plans can balance 
between different risk. 

 

Figure 48 – WDRM Improvement Schedule (OEIS Presentation - October 5th, 2021) 

In addition, note that the WDRM is currently modeled separately from PG&E’s Operational Public Safety Power 
Shutoff (PSPS) model, and other wildfire risk-related modeling efforts. While the RaDA team communicated with 
the PG&E staff and contractors involved in these other efforts, there is an overlap since investments in long-
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term risk reduction decrease the likelihood of PSPS shutoffs and vice versa. Future modeling efforts will seek to 
integrate the WDRM with other PG&E modeling efforts, and with similar efforts at other California utilities, as 
makes sense, and as is required by regulatory guidance. 

This roadmap for improvements to the WDRM will be revisited on a continual basis as PG&E seeks to quantify 
wildfire risk and risk reduction and target work plans to the end that catastrophic wildfires will stop.  
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6 Appendix: Covariate Pools 
In the WDRM v3, the set of all covariates available for modeling is called the covariate pool. In this section we document the covariate pools available to the P(o) 
and P(i|o) models and which covariates used by the model subsets. 

6.1 P(o) Model Subsets Covariates 

The following tables summarize the pool of covariates developed for use in P(o) model development. 

 

Covariate Dataset Vintage Source 
Type Units Description 

local_topography National 
elevation 
database 

n/a raster Unitless 
positive or 
negative 
score 

Topographic Position Index (TPI) helps distinguish topographic 
features such as a hilltop, valley bottom, exposed ridge, flat plain, 
upper or lower slope. It is calculated by comparing the elevation of 
each pixel to its surrounding neighbours. 

vapor_pressure_deficit_avg gridmet 2019 raster kPa Mean vapor pressure deficit. The daily max value is averaged over 
the period of fire season (June 1 to Nov 30) during the years 2015-
2019 

specific_humidity_avg gridmet 2019 raster kg/kg Mean specific humidity, averaged over the period of fire season 
(June 1 to Nov 30) during the years 2015-2019. 

burn_index_avg gridmet 2019 raster NFDRS fire 
danger 
index - 
Burning 
index 

Mean NFDRS fire danger index (Burning index), averaged over the 
period of fire season (June 1 to Nov 30) during the years 2015-2019. 

energy_release_avg gridmet 2019 raster NFDRS fire 
danger 
index - 
Energy 
release 
component 

Mean NFDRS fire danger index (Energy release component), 
averaged over the period of fire season (June 1 to Nov 30) during the 
years 2015-2019. 

wind_avg Pge 
meteorology 

2021 raster Miles per 
hour 

Sustained hourly windspeed at 10m above ground level, averaged 
over the period of fire season (June 1 to Nov 30) during the years 
2015-2020. 

wind_max Pge 
meteorology 

2021 raster Miles per hour 
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daily_max_temperature_avg Pge 
meteorology 

2021 raster °F Max of the hourly max temperature each day, averaged over the 
period of fire season (June 1 to Nov 30) during the years 2015-2020. 

100_hour_fuels_avg Pge 
meteorology 

2021 raster % 100 hour fuel moisture content - measure of the amount of water in 
"100 hour" fuel (downed logs and branches 1-3" in diameter), 
expressed as a percentage of the dry weight of that fuel. Hourly 
metrics averaged across fire season (June through Nov) for the years 
2015-2020 

1000_hour_fuels_avg Pge 
meteorology 

2021 raster % 1000 hour fuel moisture content - measure of the amount of water 
in "1000 hour" fuel (downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of that fuel. Hourly 
metrics averaged across fire season (June through Nov) for the years 
2015-2020 

precipitation_avg Pge 
meteorology 

2021 raster 
  

windy_summer_day_pct Pge 
meteorology 

2021 raster % Fraction of fire season (June through Nov) days with max hourly 
wind speed over 15 mph. 

impervious National 
land cover 
database 

2016 raster % Percent of the pixel covered by developed impervious surface. 

nonburnable_land_index Landfire 
surface fuels 

2016 raster % Percentage of raster pixel considered unburnable, because it is of 
land types not considered to have combustible fuel (agricultural 
land, snow and ice, water, and barren/rocky areas) 

gusty_summer_day_pct rtma Late 
2019 

raster % Fraction of fire season (June through Nov) days with max wind gusts 
over 20 mph 

merged_strike_tree_count Vegetation 
merged 

2019 raster Count of 
trees in 
each 100m 
pixel that 
could strike 
conductors. 

 

merged_strike_tree_ 
count_perlinemile 

Vegetation 
merged 

2019 raster Count of 
trees in 
each 100m 
pixel that 
could strike 
conductors, 
divided by 
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the line 
miles 
present in 
each pixel. 

merged_strike_tree 
_height_avg 

Vegetation 
merged 

2019 raster meters 
 

merged_strike_tree 
_height_min 

Vegetation 
merged 

2019 raster meters 
 

merged_strike_tree 
_height_max 

Vegetation 
merged 

2019 raster meters 
 

tree_species_treemap treemap 2014 raster Numerical 
species 
descriptor 

 

cwhr_aspen cwhr 2014 raster 1/0 
cwhr_blue_oak 
_foothill_pine 

cwhr 2014 raster 1/0 

cwhr_blue_oak 
_woodland 

cwhr 2014 raster 1/0 

cwhr_coastal_oak 
_woodland 

cwhr 2014 raster 1/0 

cwhr_closed_cone 
_pine_cypress 

cwhr 2014 raster 1/0 

cwhr_douglas_fir cwhr 2014 raster 1/0 
cwhr_desert_riparian cwhr 2014 raster 1/0 
cwhr_eastside_pine cwhr 2014 raster 1/0 
cwhr_eucalyptus cwhr 2014 raster 1/0 
cwhr_jeffrey_pine cwhr 2014 raster 1/0 
cwhr_joshua_tree cwhr 2014 raster 1/0 
cwhr_juniper cwhr 2014 raster 1/0 
cwhr_klamath 
_mixed_conifer 

cwhr 2014 raster 1/0 

cwhr_lodgepole_pine cwhr 2014 raster 1/0 
cwhr_montane 
_hardwood_conifer 

cwhr 2014 raster 1/0 

cwhr_montan 
e_hardwood 

cwhr 2014 raster 1/0 
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cwhr_montan 
e_riparian 

cwhr 2014 raster 1/0 

cwhr_pinyon_juniper cwhr 2014 raster 1/0 
cwhr_palm_oasis cwhr 2014 raster 1/0 
cwhr_ponderosa_pine cwhr 2014 raster 1/0 
cwhr_redwood cwhr 2014 raster 1/0 
cwhr_red_fir cwhr 2014 raster 1/0 
cwhr_subalpine_conifer cwhr 2014 raster 1/0 
cwhr_sierran 
_mixed_conifer 

cwhr 2014 raster 1/0 

cwhr_valley 
_oak_woodland 

cwhr 2014 raster 1/0 

cwhr_valley 
_foothill_riparian 

cwhr 2014 raster 1/0 

cwhr_white_fir cwhr 2014 raster 1/0 
soil_AWC gnatsgo 2019 raster inches/inch Available water capacity. The amount of water that an increment of 

soil depth, inclusive of fragments, can store that is available to 
plants. AWC is expressed as a volume fraction, and is commonly 
estimated as the difference between the water contents at 1/10 or 
1/3 bar (field capacity) and 15 bars (permanent wilting point) 
tension and adjusted for salinity, and fragments. 

soil_CLAY gnatsgo 2019 raster % Clay content of soil. Mineral particles less than 0.002mm in 
equivalent diameter as a weight percentage of the less than 2.0mm 
fraction. 

soil_erosion_kffact gnatsgo 2019 raster n/a An erodibility factor which quantifies the susceptibility of soil 
particles to detachment by water. 

soil_OM gnatsgo 2019 raster % Organic matter content. The amount by weight of decomposed plant 
and animal residue expressed as a weight percentage of the less 
than 2 mm soil material. 

soil_PERM gnatsgo 2019 raster inches/hour Permeability rates. 
soil_THICK gnatsgo 2019 raster inches Total thickness of all sampled soil layers. 
soil_HYGRP gnatsgo 2019 raster Index Soil index variable - 1 = well drained to 4 = poorly drained. 
soil_DRAIN gnatsgo 2019 raster Index Soil index variable - 1 = well drained to 7 = poorly drained. 
soil_SLOPE gnatsgo 2019 raster % Average slope. The difference in elevation between two points, 

expressed as a percentage of the distance between those points. 
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soil_LL gnatsgo 2019 raster % Moisture 
by weight 

Liquid limit. The water content of the soil at the change between the 
liquid and plastic states. 

soil_IFHYDRIC gnatsgo 2019 raster Index Hydric soil indicator - 1 if hydric. 
soil_annual_flood_freq gnatsgo 2019 raster Index Annual flood frequency - 1 = frequent (>50% chance), 2 = occasional 

(5-50% chance), 3 = rare (<5% chance). 
population_density world_pop 2010 - 

2020 
raster Count of 

people 
residing in 
each grid 
cell 

 

temp2m_f_summer 
_max_high 

Pge 
meteorology 

2021 location 
time 
series 
raster 

°F  

temp2m_f_summer 
_avg_high 

Pge 
meteorology 

2021 location 
time 
series 
raster 

°F  

acc_precip_summer_sum Pge 
meteorology 

2021 location 
time 
series 
raster 

%  

ws_mph_summer 
_gt15mph_pct 

Pge 
meteorology 

2021 location 
time 
series 
raster 

Miles per 
hour 

 

 

 

6.2 P(o) MaxEnt Subset Models Covariates 

The MaxEnt model fitting process includes a feature generation step, where all the covariates offered to the model are interacted and recast with hinges and 
thresholds. The resulting set of features are then regularized as a part of the model fitting procedure, resulting in a subset of all features remaining in the final 
model fits. The following table summarizes all covariates offered to each MaxEnt subset model. 
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Subset Animal 
bird 

Animal 
other 

Animal 
squirrel 

Other 
equipment 

type 

Primary 
conductor 

Secondary 
conductor 

Third 
party 

balloon 

Third 
party 
other 

Third 
party 

vehicle 

Vegetation 
branch 

Vegetation 
other 

Vegetation 
trunk 

Voltage 
control 

equipment 
type 

local_topography X X X X X X X X X X X X X 

merged_strike_tree_count X X X X X X X X X X X X X 

merged_strike_tree 
count_perlinemile 

X X X X X X X X X X X X X 

merged_strike_tree 
height_avg 

X X X X X X X X X X X X X 

merged_strike_tree 
height_min 

X X X X X X X X X X X X X 

merged_strike_tree 
height_max 

X X X X X X X X X X X X X 

100_hour_fuels_avg X X X X X X X X X X X X X 

1000_hour_fuels_avg X X X X X X X X X X X X X 

burn_index_avg X X X X X X X X X X X X X 

energy_release_avg X X X X X X X X X X X X X 

nonburnable_land_index X X X X X X X X X X X X X 

impervious X X X X X X X X X X X X X 

tier_2 X X X X X X X X X X X X X 
tier_3 X X X X X X X X X X X X X 
coastal X X X X X X X X X X X X X 

operatingvoltage X X X X X X X X X X X X X 

subtypecd X X X X X X X X X X X X X 

conductor_size 
and_material 

X X X X X 
 

X X X 
   

X 

psps_segment X X X X X 
 

X X X 
   

X 

precipitation_avg X X X X X X X X X X X X X 

specific_humidity_avg X X X X X X X X X X X X X 
daily_max 
temperature_avg 

X X X X X X X X X X X X X 

vapor_pressure 
deficit_avg 

X X X X X X X X X X X X X 

gusty_summer_day_pct X X X X X X X X X X X X X 

windy_summer_day_pct X X X X X X X X X X X X X 

wind_avg X X X X X X X X X X X X X 

wind_max X X X X X X X X X X X X X 

tree_species_treemap X X X X X X X X X X X X X 
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cwhr_aspen X X X X X X X X X X X X X 

cwhr_blue_oak 
foothill_pine 

X X X X X X X X X X X X X 

cwhr_blue_oak woodland X X X X X X X X X X X X X 

cwhr_coastal_oak 
woodland 

X X X X X X X X X X X X X 

cwhr_closed_cone 
pine_cypress 

X X X X X X X X X X X X X 

cwhr_douglas_fir X X X X X X X X X X X X X 

cwhr_desert_riparian X X X X X X X X X X X X X 

cwhr_eastside_pine X X X X X X X X X X X X X 

cwhr_eucalyptus X X X X X X X X X X X X X 

cwhr_jeffrey_pine X X X X X X X X X X X X X 

cwhr_joshua_tree X X X X X X X X X X X X X 

cwhr_juniper X X X X X X X X X X X X X 

cwhr_klamath 
mixed_conifer 

X X X X X X X X X X X X X 

cwhr_lodgepole_pine X X X X X X X X X X X X X 

cwhr_montane 
hardwood_conifer 

X X X X X X X X X X X X X 

cwhr_montane hardwood X X X X X X X X X X X X X 

cwhr_montane riparian X X X X X X X X X X X X X 

cwhr_pinyon_juniper X X X X X X X X X X X X X 

cwhr_palm_oasis X X X X X X X X X X X X X 

cwhr_ponderosa_pine X X X X X X X X X X X X X 

cwhr_redwood X X X X X X X X X X X X X 

cwhr_red_fir X X X X X X X X X X X X X 

cwhr_subalpine_conifer X X X X X X X X X X X X X 

cwhr_sierran 
mixed_conifer 

X X X X X X X X X X X X X 

cwhr_valley_oak 
woodland 

X X X X X X X X X X X X X 

cwhr_valley_foothill 
riparian 

X X X X X X X X X X X X X 

cwhr_white_fir X X X X X X X X X X X X X 

soil_AWC X X X X X X X X X X X X X 

soil_CLAY X X X X X X X X X X X X X 

soil_erosion_kffact X X X X X X X X X X X X X 

soil_OM X X X X X X X X X X X X X 

soil_PERM X X X X X X X X X X X X X 
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soil_THICK X X X X X X X X X X X X X 

soil_HYGRP X X X X X X X X X X X X X 

soil_DRAIN X X X X X X X X X X X X X 

soil_SLOPE X X X X X X X X X X X X X 

soil_LL X X X X X X X X X X X X X 

soil_IFHYDRIC X X X X X X X X X X X X X 

soil_annual_flood_freq X X X X X X X X X X X X X 

 

 

6.3 Asset Attribute Models Covariates 

[('support_structure_equipment_cause', 
  'failure_ind ~ age_years + prior_year_open_tag_flag + pole_volume + percentatmcu + years_since_last_ptt_inspection + merged_strike_tree_count + population_density + ws_
mph_summer_max + acc_precip_summer_sum + soil_erosion_kffact + soil_annual_flood_freq + local_topography + contour_parallel_to_coastline + contour_perpendicular_to_
coastline + is_throughbore + is_cellon_treated + 1'), 
 ('support_structure_equipment_electrical', 
  'failure_ind ~ age_years + prior_year_open_tag_flag + pole_volume + percentatmcu + years_since_last_ptt_inspection + merged_strike_tree_count + population_density + ws_
mph_summer_max + acc_precip_summer_sum + soil_erosion_kffact + soil_annual_flood_freq + local_topography + contour_parallel_to_coastline + contour_perpendicular_to_
coastline + is_throughbore + is_cellon_treated + 1'), 
 ('transformer_equipment_cause', 
  'event_flag ~ age + rated_kva + manufacturer_code_clean + manufactured_in_2012_or_after * daily_max_temperature_avg + txfmr_load_factor_12m_bucket + txfmr_mean_p
eak_kva_rated_capacity_factor_12m_bucket + coastal_corrosive + population_density + nonburnable_land_index + 1'), 
 ('transformer_equipment_leaking', 
  'event_flag ~ age + rated_kva + manufacturer_code_clean + manufactured_in_2012_or_after * daily_max_temperature_avg + txfmr_load_factor_12m_bucket + txfmr_mean_p
eak_kva_rated_capacity_factor_12m_bucket + coastal_corrosive + population_density + nonburnable_land_index + 1')] 
 

6.4 P(i|o) Model Available Covariates 

The following table presents the covariates available to the P(i|o) model 

 

Covariate Dataset Vintage Source 
Type 

Units Description 

landcover_mean national_land 
cover_database 

2016 raster index Indicator of land cover type - see 
https://www.mrlc.gov/data/legends/national-
land-cover-database-class-legend-and-description  
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impervious_mean national_land 
cover_database 

2016 raster % Percent of the pixel covered by developed 
impervious surface. 

impervious_descriptor_mean national_land 
cover_database 

2016 raster index Defines which impervious layer pixels are 
roads and provides the best fit description for 
impervious pixels that are not roads. 

shrubland_annual_herbaceous_mean national_land 
cover_database 

2016 raster % The annual only grass and forb proportion in 
each in 30m pixel. 

shrubland_bare_ground_mean national_land 
cover_database 

2016 raster % The bare ground proportion in each pixel. 

shrubland_big_sagebrush_mean national_land 
cover_database 

2016 raster % The proportion of big sagebrush canopy in 
each pixel. 

shrubland_herbaceous_mean national_land 
cover_database 

2016 raster % The annual and perennial grass and forb 
proportion in each pixel. 

shrubland_litter_mean national_land 
cover_database 

2016 raster % The dead plant material proportion in each 
pixel. 

shrubland_sagebrush_mean national_land 
cover_database 

2016 raster % The proportion of sagebrush canopy in each 
pixel. 

shrubland_sagebrush_height_mean national_land 
cover_database 

2016 raster centimeters Average height of sagebrush. 

shrubland_shrub_mean national_land 
cover_database 

2016 raster % The proportion of shrub canopy in each pixel. 

shrubland_shrub_height_mean national_land 
cover_database 

2016 raster centimeters Average height of shrubs. 

percent_tree_cover_mean national_land 
cover_database 

2016 raster % Percent of the pixel that is covered by tree 
canopy. 

usgs_gap100m_cat national_terrestrial 
ecosystems 

2011 raster 584 numerical values, indicating different landcover 
descriptions 

TPI-LOCAL national_elevation 
database 

Not 
applicable 

raster Unitless 
positive or 
negative score 

Topographic Position Index (TPI) helps 
distinguish topographic features such as a 
hilltop, valley bottom, exposed ridge, flat 
plain, upper or lower slope. It is calculated by 
comparing the elevation of each pixel to its 
surrounding neighbours. 

hftd100m_zone high_fire 
threat_district 

Jan-18 raster Numerical indicators of the HFTD Tier 

elevation100m_m national_elevation 
database 

Not 
applicable 

raster meters (above sea level) 
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pop_density100m_cnt_100m2 world_pop 2010 - 
2020 

raster Count of people residing in each grid cell 

satellite_tree_height_max vegetation_satellite 2019 raster meters 
 

satellite_tree_count vegetation_satellite 2019 raster Count of trees in each 100m pixel that could strike conductors. 
satellite_tree_height_perlinemile vegetation_satellite 2019 raster Count of trees in each 100m pixel that could strike conductors, 

divided by the line miles present in each pixel. 
satellite_tree_height_avg vegetation_satellite 2019 raster meters 

 

fpi_fire_season_dfm_1000hr_avg pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across fire 
season (June through Nov) for the years 2015-
2020 

dfm_100hr_month_1 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 1 (Jan) for the years 2015-2019 

dfm_100hr_month_2 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 2 (Feb) for the years 2015-2019 

dfm_100hr_month_3 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 3 (March) for the years 2015-
2019 

dfm_100hr_month_4 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
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weight of that fuel. Hourly metrics averaged 
across month 4 (April) for the years 2015-2019 

dfm_100hr_month_5 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 5 (May) for the years 2015-2019 

dfm_100hr_month_6 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 6 (June) for the years 2015-2019 

dfm_100hr_month_7 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 7 (July) for the years 2015-2019 

dfm_100hr_month_8 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 8 (Aug) for the years 2015-2019 

dfm_100hr_month_9 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 9 (Sept) for the years 2015-2019 

dfm_100hr_month_10 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
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across month 10 (Oct`) for the years 2015-
2019 

dfm_100hr_month_11 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 11 (Nov) for the years 2015-
2019 

dfm_100hr_month_12 pge_meteorology Jul-21 raster % 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
and is expressed as a percentage of the dry 
weight of that fuel. Hourly metrics averaged 
across month 12 (Dec) for the years 2015-
2019 

dfm_1000hr_month_1 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 1 (Jan) for the years 2015-2019 

dfm_1000hr_month_2 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 2 (Feb) for the years 2015-2019 

dfm_1000hr_month_3 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 3 (March) for the years 2015-2019 

dfm_1000hr_month_4 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
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expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 4 (April) for the years 2015-2019 

dfm_1000hr_month_5 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 5 (May) for the years 2015-2019 

dfm_1000hr_month_6 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 6 (June) for the years 2015-2019 

dfm_1000hr_month_7 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 7 (July) for the years 2015-2019 

dfm_1000hr_month_8 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 8 (Aug) for the years 2015-2019 

dfm_1000hr_month_9 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 9 (Sept) for the years 2015-2019 

dfm_1000hr_month_10 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
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that fuel. Hourly metrics averaged across 
month 10 (Oct) for the years 2015-2019 

dfm_1000hr_month_11 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 11 (Nov) for the years 2015-2019 

dfm_1000hr_month_12 pge_meteorology Jul-21 raster % 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. Hourly metrics averaged across 
month 12 (Dec) for the years 2015-2019 

fpi_v3_grass pge_meteorology Jul-21 raster % Fraction of fuel category in POMMS grid cell 
attributed to grass 

fpi_v3_grass-shrub pge_meteorology Jul-21 raster % Fraction of fuel category in POMMS grid cell 
attributed to grass-shrub 

fpi_v3_shrub pge_meteorology Jul-21 raster % Fraction of fuel category in POMMS grid cell 
attributed to shrub 

fpi_v3_timber_litter pge_meteorology Jul-21 raster % Fraction of fuel category in POMMS grid cell 
attributed to timber litter 

fpi_v3_timber_understory pge_meteorology Jul-21 raster % Fraction of fuel category in POMMS grid cell 
attributed to timber understory 

fpi_v3_urban pge_meteorology Jul-21 raster % Fraction of fuel category in POMMS grid cell 
attributed to urban 

fpi_v3_slope_degree_mean pge_meteorology Jul-21 raster 
 

Slope of terrain averaged over POMMS grid 
cell. 

fpi_v3_terrainrugged_mean pge_meteorology Jul-21 raster 
 

Terrain ruggedness average in POMMS grid 
cell. 

fpi_v3_aspect_most_common_angle pge_meteorology Jul-21 raster 
  

fpi_v3_R_score pge_meteorology Jul-21 Location 
time raster 

Score of 1 to 5 

fpi_v3_prob_detect pge_meteorology Jul-21 Location 
time raster 

% 

fpi_v3_prob_large pge_meteorology Jul-21 Location 
time raster 

% 
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fpi_v3_prob_catastrophic pge_meteorology Jul-21 Location 
time raster 

% 

fpi_v3_prob_large_or_catastrophic pge_meteorology Jul-21 Location 
time raster 

% 

fpi_v3_event_dfm_10hr pge_meteorology Jul-21 Location 
time raster 

% 10 hour fuel moisture content - measure of 
the amount of water in "10 hour" fuel 
(downed logs and branches 0.25"-1" in 
diameter), expressed as a percentage of the 
dry weight of that fuel. 

fpi_v3_event_dfm_100hr pge_meteorology Jul-21 Location 
time raster 

% 100 hour fuel moisture content - measure of 
the amount of water in "100 hour" fuel 
(downed logs and branches 1-3" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. 

fpi_v3_event_dfm_1000hr pge_meteorology Jul-21 Location 
time raster 

% 1000 hour fuel moisture content - measure of 
the amount of water in "1000 hour" fuel 
(downed logs and branches 3-8" in diameter), 
expressed as a percentage of the dry weight of 
that fuel. 

fpi_v3_event_acc_precip pge_meteorology Jul-21 Location time raster 
fpi_v3_event_sfcdownshortwaveflux pge_meteorology Jul-21 Location time raster 
fpi_v3_event_temp2m_f pge_meteorology Jul-21 Location 

time raster 
°F 

fpi_v3_event_rh2m pge_meteorology Jul-21 Location time raster 
fpi_v3_event_ws_mph pge_meteorology Jul-21 Location 

time raster 
miles per hour Wind speed at the surface. 

fpi_v3_event_ws_mph_300m pge_meteorology Jul-21 Location 
time raster 

miles per hour Wind speed at 300 meters above the surface. 

fpi_v3_event_wind_dir_f pge_meteorology Jul-21 Location time raster Wind direction. 
fpi_v3_event_lfm_chamise_new pge_meteorology Jul-21 Location 

time raster 
% Live fuel moisture content of Chamise (new 

growth) species. 
fpi_v3_event_lfm_chamise_old pge_meteorology Jul-21 Location 

time raster 
% Live fuel moisture content of Chamise (old 

growth) species. 
fpi_v3_event_land_use pge_meteorology Jul-21 Location time raster 
fpi_v3_event_ffwi pge_meteorology Jul-21 Location time raster Fosberg Fire Weather Index 
fpi_event_u10_ms pge_meteorology Jul-21 Location time raster 
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fpi_event_v10_ms pge_meteorology Jul-21 Location time raster 
fpi_event_dfm_1hr pge_meteorology Jul-21 Location 

time raster 
% 1 hour fuel moisture content - measure of the 

amount of water in "1 hour" fuel (fine dead 
fuels up to 0.25" in diameter, such as grass), 
expressed as a percentage of the dry weight of 
that fuel. 

fpi_event_fpi pge_meteorology Jul-21 Location 
time raster 

Score of 1 to 5 

 

 

6.5 Model Covariates Offered to P(i|o) 

The following table lists the covariates used by the WDRM v3 P(i|o) model 

'ign_ind ~ fpi_v3_urban + subset_name + fpi_v3_grass + impervious_mean + fpi_v3_shrub + fpi_v3_timber_understory + fpi_v3_timber_litter + hftd + fpi_v3_ev
ent_ws_mph + fpi_v3_event_dfm_10hr + fpi_v3_event_dfm_1000hr 
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7 Appendix: Special Topics 
7.1 Wind 

7.1.1 Overview 

The ingredients in dangerous wildfire are, in order from least to most ephemeral, favorable topography (fire 
burns better uphill), the presence of fuels, low fuel moisture, and winds. For the most part, topography doesn’t 
change; outside of wildfire consuming them, fuel levels are fairly stable over whole fire seasons at least; and fuel 
moisture is a lagged effect of long term exposure to hot/dry air – 100 hour fuels are lagged over 4 days and 1000 
hour fuels are lagged over 40 days – and is primarily a seasonal metric, with lower fuel moisture in more 
locations later in the dry season (end of summer and beginning of fall all the way until the first soaking rains). 
Wind, however, operates on much finer timescales. For this reason, wind can be considered the final, “right 
now” condition that makes bad wildfires worse and catastrophic wildfires possible.  

The role of wind in wildfire is complex. Hot dry winds at high speeds can be the primary driver of breathtaking 
runs of fire spread – not just by driving fire to spread directly from a given location to neighboring locations 
downwind, but also by driving embers that can transport fire much faster than contiguous spread. However, as 
any camper can tell you, elevated wind speeds can also snuff out small fires before they are large enough to 
spread, and as recent experience with megafires has shown, wind need not be a pre-existing condition: 
sufficiently large fires create their own wind though superheated updrafts that support the formation of massive 
pyro-cumulus clouds while drawing in ground level replacement air – causing winds to flow into the fire, 
sometimes from all directions. On top of all this, the lightning strike fires of 2020 and other examples like the 
Dixie Fire of 2021 and many before it have illustrated the degree to which established fire can persist for days 
and weeks with little to no wind only to spread explosively when days of extreme wind do occur. On calm days, 
fires are far more manageable and, in a wildland setting, can even be beneficial to landscapes that co-evolved 
with fire. But on extreme wind event days, fires can be unpredictable, impossible to control, and devastating to 
everything in their path. The longer a fire burns, the more likely it is to experience such winds and therefore the 
more likely it is to escape control, with potentially catastrophic effects. 

For all of the above reasons, the most dangerous fire conditions occur where there has been significant buildup 
of low moisture fuels dried by preceding hot, dry weather during periods of high sustained winds. Any grid 
events that occur under these conditions are high risk because they satisfy all of the pre-conditions for 
dangerous fire and are also guaranteed to experience the most ephemeral one: wind. In recognition of such risk, 
these conditions have become the criteria for PG&E’s PSPS program, which turns off grid assets, and EPSS 
program, which tunes the response of protective devices to aggressively trigger outages without the “recloser” 
behaviors that can automatically recover from transient faults. 
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7.1.2 Considerations when modeling with wind 

When modeling ignition events and their consequences, there are several wind-related factors to consider, and 
judgement is required:  

• When modeling on annual or longer timeframes, it is inevitable that dangerous winds will be present 
some of the time and such winds make new and existing fires more dangerous. So the ignition 
consequence can be thought of as tied to the likelihood that a fire will be exposed to dangerous winds 
during its lifetime. In the WDRM v3 this is captured through the FPI R score thresholds in the 
consequence model (R Scores factor in weather), wind data from the day of events used to train the 
P(ignition|outage) model, and in the percentage of days with elevated winds in the P(outage) models. 

• Some grid events are more likely to be associated with dangerous conditions. For example, vegetation-
caused events are quite likely to be in the presence of fuels and some are caused by wind, which also 
factors into dangerous conditions. In the WDRM v3, this is captured in the independent fit of cause and 
sub-cause-categorized subsets and in the subset-specific terms in the P(ignition|outage) model, where 
the strength of wind importance varies substantially by subset.  

• In locations that are always windy, winds strong enough to cause branches or grid equipment to break 
could happen on any given day – they are statistically more likely to occur under fuel and moisture 
conditions not conducive to extreme wildfire. Further, trees are smaller and stouter and grid assets built 
to a more stringent specification in locations with known and consistent stresses. We might say that the 
wind “harvests” the faults more steadily, and the resulting repairs and corrections make the grid (and 
vegetation) more resilient to wind. In that sense, unusually strong winds can be more dangerous than 
consistently strong winds. In the WDRM v3, this is accounted for by the derivation of wind covariates 
that capture the percentage of days that witness winds above specific threshold values and by providing 
min and max wind speeds as well as their average over time. 

• PSPS and EPSS are not perfect, but they are greatly reducing the possibility of ignitions under the most 
extreme fire conditions. In the WDRM v3, the lack of new data from PSPS and EPSS events is accounted 
for by treating PSPS Hazards and Damages as expected outages, and as ignitions weighted to reproduce 
historical annual totals consistent with pre-PSPS counts under PSPS conditions. 

• Also resulting from the effects of PSPS and EPSS events, fewer of the remaining ignitions originate 
during extreme fire weather conditions. This circumstance has underscored the potential for destructive 
fire behavior from fires that evade suppression long enough to be exposed to high winds that drive runs 
days or even weeks after their initial ignition. Examples including the lightning-caused LNU, CZU, SCU, 
and August Complex fires from 2020, the Dixie Fire, and many others. The potential for dangerous fire 
weather in the days that follow ignitions is accounted for by identifying destructive potential using 
simulations trained on worst fire weather days and by calibrating consequence against VIRRS final 
wildfire size and fire agency data on consequences. 

• Because extreme events are comparatively rare in time and space, ignitions under such conditions tend 
to lack statistical power. This means that models fit to only such events produce estimates with very 
large uncertainties and risk over-fitting the data. However, the failure process behind most ignitions is 
often the same on extreme fire risk days or ordinary days. It is therefore possible to study those 
processes under the assumption that they could have been dangerous but for the lack of extreme 
weather and with the knowledge that mitigations effective against one will be effective against the 
other. By recognizing that many ignitions share root causes with those under the most dangerous 
conditions models trained on a broader sample of events and ignitions can establish greater statistical 
power. 
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7.1.3 The role of wind in the WDRM v3 

The WDRM v3 is not a monolithic model. Rather it estimates risk based on three separate estimation steps: 

• The probability of outages given asset and environmental conditions 
• The probability of ignitions given an outage and its cause, location, and other characteristics 
• The consequences of an ignition, given its location of origin.  

7.1.3.1 Tabulation of wind conditions for modeled events 

Wind is highly turbulent and interacts with the ground and surface features. No matter the spatial scale of 
measurements, there will always be unobserved structure to wind speeds. Wind data consumed by the WDRM 
v3 is thus a combination of ground truth measurements and weather model simulation. In this case, the PG&E 
meteorology department produces 2km gridded wind data on an hourly timescale. Gusts often occur when 
turbulent flow brings unobstructed wind all the way to the ground, and wind events are often associated with 
phenomena that drive higher altitude flows downward for sustained periods. For these reasons, meteorology 
data on winds above the ground is a useful proxy for the gusts that may be experienced on the ground. To break 
down windy vs. not windy conditions (just for the purposes of this discussion) we define “high wind” as hourly 
wind speed values exceeding 35 mph at 300m above the ground. Target set events occurring on days where 
their (2km grid) location experienced high winds for at least one hour are labeled “high wind” and all others are 
labeled “low wind” although “not high wind” is probably more accurate a name. 

The count of high and low wind events with different groupings are tabulated below. 

 

 low_wind high_wind low_wind_pct high_wind_pct 

No ignition 95,919 17,788 84.36 15.64 

Ignition 2,757 345 88.88 11.12 

Table 19: High and low wind event counts by ignition status 

By failure type: 

 low_wind high_wind low_wind_pct high_wind_pct 

Damage 472 549 46.23 53.77 

Hazard 205 246 45.45 54.55 

forced_outage 17,163 5,847 74.59 25.41 

Ignition_no_outage 1,223 130 90.39 9.61 

outage 79,613 11,361 87.51 12.49 
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Table 20: High and low wind event counts by event type 

The WDRM v3 is focused on disaggregating all events into subsets with shared causes and sub-causes. The two 
figures below illustrate the fraction of outages (first one) and ignitions (second one) in each subset experiencing 
high winds. 

 

Figure 49: Fraction of outages on high or low wind days, by WDRM v3 subset. Note that third_party_balloon 
has very few outages and its prominence may be a statistical fluke 

 

 

Figure 50: Fraction of ignitions on high or low wind days, by WDRM v3 subset 
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7.1.4 Role of wind in P(outage) 

The importance of wind covariates to each of the MaxEnt P(outage) models can be compared using covariate 
jackknife results. Jackknifing is the process of isolating one covariate at a time, re-running a given model without 
the covariate, and running a model fit on only that covariate to measure how much worse the model is without 
the covariate (loss) and how good the model with only the covariate is (gain). The figures below illustrate the 
loss and gain from wind covariates for all MaxEnt subsets. The variability in loss/gain the figures illustrate 
confirms that wind plays a different role in different causes of outages and that the methods employed to 
predict P(outage) are capturing this differentiation. 

 

Figure 51: Loss of predictive performance for each subset missing each wind covariate 

 

Figure 52: Predictive performance of each wind covariate alone for events drawn from each subset 
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7.1.5 Role of wind in P(ignition|outage) 

The P(ignition|outage) model is trained on the event target set of data, which includes all outage, ignition 
without outage, and PSPS Hazards and Damages events, with cause, sub-cause, location-specific environmental 
conditions, and weather data covariates explaining/predicting 0/1 ignition indicator labels. In the case of PSPS 
Hazards and Damages, actual ignition outcomes are unknowable, but all are labeled with a 1 ignition indicator, 
but weighted to produce expected ignition counts consistent with ignition rates observed under PSPS conditions 
before such events were called. 

Since it trains on event data, the P(ignition|outage) model consumes day-of event wind speed data – daily 
maximum wind speeds at 10m altitude. The model exhibits strong subset-level fixed effects (the faults 
associated with different causes and sub-causes have inherently different energetics and pathways to ignitions). 
Among the spatially varying covariates, wind speed are the third most important (as measured by influence over 
average precision) behind only 10hr fuel moisture and HFTD tier indicators, each related to the pre-conditions of 
fire. 

The output of the P(ignition|outage) model are predictions for all grid locations with daily temporal resolution 
due to fuel moisture and wind covariates. However, the WDRM v3 predicts typical fire season risk values. For 
compatibility with the WDRM, the P(ignition|outage) model is used to predict daily values across multiple years 
of historic fire season weather and fuel conditions, with the daily estimates aggregated into seasonal 
predictions. The aggregation process weights each day’s contribution to the aggregate by its observed count of 
outages. In this way, the seasonal estimate automatically emphasizes the conditions associated with elevated 
outage rates, capturing their outsized importance in determining ignition probabilities. For example, the 
elevated rate of vegetation caused outages associated with late summer winds leads to those late summer 
conditions factoring more heavily into the seasonal P(i|o) for vegetation-caused outages. 

7.1.5.1 Role of wind in Consequence 

The most well-known role that wind plays in consequence is that the Tecnosylva fire simulations at 200m 
locations along the grid are performed for hundreds of historically dangerous fire weather conditions. The 
resulting fire size, rate of spread, and flame length from these simulation results are used to estimate the 
potential for ignitions in each location to become destructive. The more consistently severe the simulation 
results are across simulated days, the greater the estimated consequence.  

However, that is only part of the story for the WDRM v3. The WDRM v3 also considers what is known as the v3 
FPI R score when determining destructive potential. The R score, which ranges from 1-5 is a measure of how 
likely a fire detectable from space (via the VIRRS satellite) is to spread into large or destructive size categories. 
The v3 FPI model, developed to support the process of forecasting and calling PSPS events and therefore well-
tuned to the “right now” conditions that govern the severity of wildfire, is trained on fuels and hourly wind and 
weather data and delivers R scores on an hourly basis for all grid locations. The WDRM v3 consequence model is 
supported by historical R scores for all fire season days 2015-2020, where ignitions on any day/location 
experiencing an R score of 4 or higher is also classified as having destructive potential. 
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8 Appendix: Methodological Details 
8.1 MaxEnt 

8.1.1 Overview 

To answer the question of where outage events for each subset are likely to occur, we have estimated fire 
season outage probabilities using maximum entropy models (as implemented in software called MaxEnt4) 
developed by computer scientists at AT&T research and Princeton University for the modeling of ecological 
ranges of species5. These models are trained on outage locations and gridded spatial (raster) environmental and 
asset attribute data for all “grid pixels”, which are defined as raster pixels that host distribution grid assets on a 
100mx100m scale. Event locations are considered “presence” observations and the set of all grid pixels are 
considered the “background”. To accrue enough data to identify spatial patterns in the events, event training 
data typically spans several years of data collection. Although it is possible to filter training data by coarse 
temporal criteria, the model is dedicated to spatial, not temporal, patterns. The so-called “raw output” of 
MaxEnt models provides relative scores for fire-season outages per “grid pixel” of input data. Given know 
outage rates, the raw outputs can be calibrated through a logistic mapping with free parameter, τ, into annual 
fire season probabilities of outages for all grid pixels. 

8.1.2 How MaxEnt frames estimation problems 

We are interested in which environmental conditions and asset attributes (collectively called the model 
covariates) are more common (or less common) among outage locations (presence samples) than they are 
among all distribution grid locations (background samples). For example, tall trees are more common among 
vegetation-caused outage locations than they are among typical distribution grid locations. Metrics of fuel 
dryness, HFTD tier assignments, prevailing weather conditions, prevailing conductor materials and size, land use 
types, and others, can all be examined for such patterns. The ratio of the distribution of covariate value 
prevalence at outage locations to their prevalence across all grid locations is called the relative occurrence rate.  

MaxEnt provides a way of estimating the relative occurrence rate given a fairly modest number of outage 
locations. The way it does this is to fit a statistical distribution of covariate values for outage locations that is 
consistent with the values at known outage locations, but otherwise as similar as possible to the distribution of 
values found everywhere else along the distribution grid. The similarity criteria is enforced using a metric called 
the relative information entropy between the distributions of covariate values associated with outage locations 
and the distribution grid locations, where the larger that metric is, the more similar the two distributions are. 
For this reason, the overall approach is referred to as a maximum entropy estimation of the relative occurrence 
rate. 

Because historic outage counts are available, the relative occurrence rate can be scaled via a logistic transform 
with τ scale parameter ensuring expected counts match known outcomes. This results in an estimate of the 
annual probability an outage for all combinations of covariate values – the calibrated model fit. The fit can then 
predict outage probabilities based on the covariate values found at each distribution grid location.  

 
4 https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_tutorial2017.pdf 
5 Note that “maximum entropy” can be the optimization target for any number of models. The specific approach used in the 
v3 WDRM, which applies a maximum entropy criteria to the relationship between presence observation locations and all 
locations, is implemented in software called MaxEnt. 
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For more technical details of the math and ideas behind MaxEnt, readers are directed to: 

• The original papers explaining the implementation of MaxEnt 
o http://rob.schapire.net/papers/maxent_icml.pdf 
o http://www.bio-nica.info/biblioteca/phillips2006maximumentropy.pdf 

• An explanation that places MaxEnt more in the language, notation, and context of statistical learning 
methods 

o https://hastie.su.domains/Papers/maxent_explained.pdf 
• Because the “maximum entropy” constraint has been broadly applied to many unrelated problem 

domains, technical readers should not assume that other search results for “maximum entropy models” 
and similar are directly related to these methods. 

8.1.3 Reasons for choosing MaxEnt 

One prominent distinction between MaxEnt and more traditional Machine Learning classification methods is 
that MaxEnt is what is called an “presence only” model. This means that MaxEnt can be trained on locations 
with known events without requiring ground truth absence data. Instead, event locations are compared to all 
locations. At first glance, this might seem like an odd choice – whether there is an event or not on the grid is a 
clear criterion – however, there are several aspects of the wildfire modeling problem that benefit from the 
choice. 

The following aspects of MaxEnt make it a logical choice for the P(outage) modeling of the v3 WDRM. 

1. Location data in imprecise: The most concrete and reliable location data available for each outage is the 
location of the protective device whose activation triggered the outage. However, the root cause of 
outage producing conditions is by definition “downstream” from protective devices, often without any 
way to know the exact location. P(outage) models must be robust to these locational uncertainties. 

2. The absence of an outage does not guarantee an absence of an ignition. We are ultimately using 
outages as proxies for ignitions and there are ignitions that occur without outages.  

3. Mitigation efforts, including enhanced vegetation management, grid hardening, PSPS events, and EPSS 
settings are implemented in the places (and times) where the conditions that produce outages and 
ignitions are deemed most risky. As a result, mitigation causes “negatives”, i.e. avoided outages, where 
untreated conditions would tend to produce them. The modeling goal is to capture untreated risks so 
the benefits of mitigation can be assessed, so we do not want the models to mistake the correlation of 
suppressed outages with treatments for a lack of risk in treated locations. 

4. Many degradation processes and proximate outage causes are environmentally driven. Environmentally 
driven failure processes benefit from support for spatial/raster data sets. 
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5. Asset attributes are not always fully known. A logical alternative to modeling spatial locations is to train 
models that attribute failures to the state of individual assets at their time of failure. By nature, such 
models require high quality asset attribute data spanning the same timeframe as event data and are 
best suited to equipment-caused outages, where internal degradation and failures of specific assets 
were the drivers. The v3 WDRM does fit asset-specific models to support structure and transformer 
failures, but each required labor intensive reconstructions of subset-specific probable asset attribute 
data sets spanning years, and the corresponding data for other asset types is either unavailable, less 
mature, or only incidental to the failure mode in question. Where detailed asset attribute data is either 
unavailable or incidental to the failure mode, a spatial model like MaxEnt is necessary. 

6. MaxEnt (the software) is not just an implementation of the estimation algorithm. It includes support for 
spatial data sets and outputs, feature generation from covariates – i.e. interactions, hinges, thresholds, 
etc., regularization that adaptively down weights features that lack or degrade predictive power, and 
support for the production of train and test performance metrics. It is implemented as open-source 
software with a robust community of users and peer review of its many applications. All of these 
combined mean that there is a built-in audience that understands exactly how the models work and 
how to interpret their results. 

8.1.4 Implementation 

1. Data preparation 
a. Rasterize asset attributes – given assets with both geometries and attributes characterizing 

them, the attribute values are “burned to raster” using the geometries to assign them to each 
grid pixel. Note that the attribute values of several assets must be aggregated to assign a 
prevailing value at the pixel level and that the raster pixels with values are, by definition, the 
grid pixels for the corresponding assets. The v3 WDRM rasterizes asset data for primary 
conductors, secondary conductors, primary and secondary conductors, poles, and transformers. 

b. Prepare event data – a data set of outages, PSPS hazards and damages, and ignitions without 
outages, with ignition indicators and locations is the training event data for a MaxEnt model, 
where the locations are mapped to grid pixel locations as “presence” observations. The event 
data can be split into train and test samples and/or into leave-one-out folds for use in cross 
validation. 

c. Derive weather and other time varying data set extracts – covariate data should represent the 
conditions under which the events occurred. For multi-year event data sets, that means 
statistical extracts of multi-year sequences of weather data. Weather data, including wind speed 
and fuel moisture is aggregated into average values, but also percentile values (1% considered 
as a minimum and 99% considered the max) and counts of days crossing thresholds in wind 
speed and fuel moisture related to vegetation stress and fire risk. 

d. Prepare all covariates as raster data – all raster data, including asset data, aggregated weather 
data, and spatial attributes like tree height, vegetation types, land use categories, soil types, etc. 
are masked so only values for grid pixel locations are made available to the MaxEnt models and 
thus the probabilities are only estimated for grid pixels. Note that the grid pixels are specific to a 
given asset type, and thus asset types are associated with the data preparation for each MaxEnt 
model specification. 
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2. MaxEnt invocation (Java process invoked from python through the ccb open source library - 
https://github.com/stanford-ccb/ccb) 

a. A MaxEnt model fit is invoked through configuration options that 
i. Provide data files containing training and test event data 

ii. Provide raster files for all covariates – masked to include only grid pixel locations 
iii. Specify options for generating derived interaction, threshold, and hinge features from 

covariates 
iv. Specify options for the strength of regularization of feature selection 
v. Control whether to additionally perform jackknife model runs that systematically isolate 

or eliminate each covariate, recording the resulting (degraded) model performance 
compared to the full set of covariates 

vi. Provide a set of covariate raster files for use in out of sample (e.g. covariates drawn 
from other time periods) prediction 

b. Logistic form outputs (as raster data) are scaled to expected annual fire season counts of 
outages using the τ parameter 

c. Outputs include 
i.  A tif of raster data for P(outage) predictions for all grid locations 

ii. Jackknife results 
iii. Model fit parameters 
iv. Model performance metrics, for both train and test event data 
v. Event data used to train the model with labels on events that were dropped due to 

insufficient covariate data 
3. Multiple model fits 

a. If necessary, several MaxEnt models are executed for each subset. These can include a train/test 
run that sets aside data for testing predictive performance and flagging indications of over-
fitting, a “standard” run that trains on all available data, jackknife runs with one run that 
isolated and one run that drops each covariate (2x N covariates are run), K-fold cross validation 
runs using random folds or leave-one-out folds based on year or other categorical data. 

b. The standard run fits, trained on as much event data as possible, are used for official 
predictions, with performance reported for test data from trial/test runs. 
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8.2 Asset Time Series 

8.2.1 Introduction 

The purpose of the asset equipment failure modeling approach is to reproduce the historical layout of the assets 
on the distribution system to reveal the asset attributes at the time equipment failure occurs. An asset is often 
removed from service after a major equipment failure event, so it is critical to develop a dataset that can 
connect the historical conditions of the grid to historical equipment failure events to identify patterns in the 
types of assets that fail. Thus, the asset equipment failure models were modeled and then forecasted utilizing an 
annual approach and then employing a Random Forest algorithm to predict the annual probability of a support 
structure or transformer unit equipment failure for an individual support structure or transformer unit currently 
installed on the distribution system within PG&E’s service territory. 

 

The support structure includes the components of a pole that support the overhead system: the pole, crossarm, 
guy or anchor wire, insulators, and supporting hardware and connections. A support structure equipment failure 
can include the malfunction of one or more of these components. The model predicts the annual probability of 
an equipment failure per pole or support structure (i.e. a prediction is provided for each support structure based 
on that support structure’s attributes). The support structure model explores wood distribution poles, limiting 
predictions to those poles constructed with wood, throughbore, or centerbore material. Each structure is 
tracked in the PG&E data model by a primary key, the SAP equipment id. 

 

Transformers are nodes on the grid (identified by a California Grid Coordinate - cgc12) containing 1-3 
transformer units (identified by an SAP or GIS equipment id). When any unit on a transformer fails, they are 
typically all replaced. Thus, planning focuses on the transformer level, but failures occur at the transformer unit 
level. The RaDA team provide predictions at the transformer unit level. 

  

WMP-Discovery2023_DR_OEIS_001-Q007Atch01



95 
 

Internal  

8.2.2 Model dataset 

8.2.2.1 Equipment failure events 

The categories used to filter outage events into the appropriate asset equipment failure model are shown in 
Figure 1. Outage events were first filtered to the events caused by equipment failure. Then those events were 
split out according to the type of equipment involved (support structure or transformer). Those were each 
further split up according to sub-cause categories.  

• Support structure equipment failure events with sub-cause categories related to pole failure or other 
structural failures were allocated to the support_structure_equipment_cause model.  

• Support structure equipment failure events with sub-cause categories related to pole tracking fires or 
electrical-related outage events were allocated to the support_structure_equipment_electrical model.  

• Transformer equipment failure events with sub-cause categories related to transformer overload or 
transformer failure were allocated to the transformer_equipment_cause model.  

• Transformer equipment failure events with sub-cause categories related to leaking transformer were 
allocated to the transformer_equipment_leaking model. 

  

 

Figure 53. Categories used to filter events into the appropriate asset equipment failure model 

 

8.2.2.2 Asset dataset structure 

The asset equipment failure models utilize PG&E’s available historical data to develop annual current and 
historical representations of the asset on the distribution system. The following current and historical data is 
used: 

1. Current EDGIS asset dataset 
2. Annual snapshots of historical EDGIS asset dataset 
3. Asset replacement mapping. 

The method to trace the history of each asset type varies in PG&E’s current data model. Generally, the asset 
replacement mapping, which links an existing asset primary key to the prior asset primary key that was removed 
from service, can be used to identify the primary key for a removed asset. The historical EDGIS snapshots, which 
were extracted from backed-up versions of EDGIS for the following years: 2015, 2017, 2018, 2019, 2020, and 
2021, can be used to identify the attributes of an asset removed from service. The historical view of an asset 
type is transformed to a dataset where each row in the historical asset dataset represents an “asset-year”, or 
the asset’s primary key and associated attributes for that year. The asset-years are traced back from 2022 to 
2015. 
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8.2.2.3 Joining equipment failure events to asset-years 

Historical equipment failure events are cleaned, filtered, and joined to the asset-year dataset by the asset’s 
primary key and the year in which the equipment failure event occurred. There were several notable limitations 
in joining the event data: 

• For support structures, many events didn’t include an asset primary key for the equipment failure event. 
If the primary key couldn’t be identified, then the event was dropped during this process resulting in an 
undercounting of events.  

• For transformers, joining the event set with the covariate set is a challenge because the event set is 
based on transformers whereas the covariate set is based on the transformer unit.  A given equipment 
failure may appear in multiple rows when there are multiple units installed at the same transformer 
resulting in an undercounting of events.  Transformers may have up to three units installed, and records 
are not kept on which of the units caused the outage.  

• For transformers, the asset primary key and CGC12 were only located for outage events, resulting in an 
undercounting of the other event types (i.e. non-outage ignitions and PSPS damages and hazards). 

 

Ultimately, the four training data set count of events is included in Table 3 and is summarized as: 

o 4,631 support_structure_equipment_cause equipment failure events 
o 2,096 support_structure_equipment_electrical equipment failure events 
o 8,809 transformer_equipment_cause equipment failure events 
o 1,126 transformer_equipment_leaking equipment failure events  

An indicator column is created representing if there were one or more asset equipment failures during the 
wildfire season that asset-year (1) or if no equipment failure events were recorded during wildfire season that 
year (0).  

 

An example view of the resulting dataset for a transformer unit is shown in Table 1 and an example view of the 
resulting dataset for a support structure is shown in Table 2. Figure 2 displays the general process flow for an 
asset equipment failure model data pipeline.  More detailed information about developing the support structure 
model time series dataset can be found in the support structure technical documentation. More detailed 
information about developing the transformer unit model time series dataset can be found in the transformer 
technical documentation.  
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Figure 54. General data pipeline flow chart to develop the model time series dataset 

 

Table 21. Example of the transformer unit asset-year dataset. Note that the old transformer failed in 2019 and 
was removed from service. Then a new SAP equipment id with the same CGC12 is used for the years following 

the failure. 

CGC12 SAP 
equipment id 

year Age  
(years) 

Equipment failure 
indicator 

114303444276 103876345 2015 41 0 
114303444276 103876345 2016 42 0 
114303444276 103876345 2017 43 0 
114303444276 103876345 2018 44 0 
114303444276 103876345 2019 45 1 
114303444276 226937054 2020 1 0 
114303444276 226937054 2021 2 0 
114303444276 226937054 2022 3 N/A 

 

 

Table 22. Example of support structure asset-year representation. Note that the old pole failed in 2019, and a 
new SAP equipment id is used for the years following the failure. The global id in the asset-year dataframe 

always represents the current globalid. 

global_id SAP 
equipment 

id 

year age 
(years) 

Equipment 
failure indicator 

{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 103876345 2015 63 0 
{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 103876345 2016 64 0 
{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 103876345 2017 65 0 
{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 103876345 2018 66 0 
{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 103876345 2019 67 1 
{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 226937054 2020 1 0 
{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 226937054 2021 2 0 
{D18CBF1C-64EB-4DA0-8513-0E874FF63332} 226937054 2022 3 N/A 

Model time series 
dataset

Asset annual 
timeseries 

dataset

Current EDGIS 
asset dataset

Historical EDGIS 
asset datasets

Asset 
replacement 

mapping

Historical 
equipment-

failure events
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8.2.2.4 Model train, test, predict dataset splits 

Once a model dataset is prepared, the dataset is split into a training dataset, a test dataset, and a dataset used 
to forecast probabilities for 2022. The asset-year dataset rows for 2015 to 2021 are used for the train and test 
datasets. The asset-year dataset rows for 2022 are extracted into a separate dataset used make predictions for 
the likelihood of equipment failure during 2022 wildfire season.  

 

The support structure asset type models use a train and out-of-sample test datasets that are randomly split 
across years into 25% for the test dataset and 75% for the train dataset. A stratification of the split is used to 
ensure historical outage events are included in the test dataset despite the imbalance in the target data. The 
test dataset is set aside to evaluate the model’s performance on an out-of-sample test dataset. The remaining 
75% training dataset is used to fit the model algorithm to the equipment failure events. 

 

The transformer asset type models use a train and out-of-sample test dataset that are split by month in order to 
preserve the temporal isolation among the transformer equipment failure events. The test dataset includes the 
events that occur during the months of July and October in addition to 1/3 of the transformer units that didn’t 
experience an equipment failure event during the wildfire season. The train dataset includes the events 
occurring during the remaining wildfires season months (i.e. June, August, September, and November) as well as 
the remaining 2/3 of transformer units that didn’t experience an equipment failure event. 

 

Table 23. Model training dataset size summary 

 Model training data event counts 
Model name Training events train Test 

support_structure_equipment_cause 4,631 1,363 518 
support_structure_equipment_electrical 2,096 854 284 

transformer_equipment_cause 8,809 5,102 4,751 
transformer_equipment_leaking 1,126 626 599 
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8.2.3 Feature summary 

8.2.3.1 Feature selection 

Covariates were initially chosen based on discussions with SMEs about common equipment failure causal 
pathways. The covariates were then fed into the Random Forest algorithm and were manually selected through 
an experimentation process based on the feature importance scores described in the next section: feature 
permutation importance and the feature Gini importance score.  

 

• For support structures, the model features were not highly correlated and included: 
o pole attributes: age, volume (i.e. height & circumference), material, treatment type, structural 

loading, last invasive inspection, and prior year maintenance tags. 
o environmental: count of strike trees, population density, soil erosion, soil annual flood frequency, 

surrounding topography, distance from the coastline, and contours running perpendicular to the 
coastline. 

o weather: cumulative precipitation and maximum wind speed during wildfire season.  
• For transformers, the model features included: 

o transformer unit attributes: age, rated kVA, manufacturer, whether the transformer was 
manufactured after 2012, load factor, mean peak kVA divided by rated kVA, and whether the 
transformer was in the coastal corrosive zone.  

o environmental: population density and non-burnable land index. 
o weather: mean daily maximum temperature during wildfire season from 2015-2020. 

 

The features used for each model asset type are listed in Table 4. More detailed feature descriptions are 
provided in the respective model technical documentation. 

 

Table 24. Support structure feature definitions 

Support structure Feature name Feature description 
Asset attributes 

age_years Pole estimated age 
pole_volume Pole volume calculated as a cylinder using original circumference 

and height – essentially the pole class. 
prior_year_open_tag_flag Whether there was at least one open maintenance tag in the 

prior year, only considering B, E, F, and H tags. 
percentatmcu Structural loading descriptor indicating the estimated percent at 

the design loading capacity. 
years_since_last_ptt_inspection Number of years since the last recorded invasive pole test & 

treat (PT&T) inspection 
is_throughbore Whether the wood pole is constructed as through bore 
is_cellon_treated Whether the pole’s original treatment type was Cellon 

Environmental 
population_density Estimate of population density within a 100m x 100m pixel 
local_topography  
merged_strike_tree_count Number of trees estimated to be within striking distance based 

on both LiDAR and satellite tree data. 
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soil_annual_flood_freq USGS soil annual flood frequency 
soil_erosion_kffact USGS soil erosion K factor 

Meteorological 
ws_mph_summer_max Maximum windspeed during wildfire season (Jun-Nov) 
acc_precip_summer_sum Cumulative precipitation during wildfire season (Jun-Nov) 

Spatial 
contour_perpendicular_to_coastline Contour perpendicular to coastline 
contour_parallel_to_coastline Distance from coastline 

 

Table 25. transformer unit feature definitions 

Transformer feature name Feature description 
Asset attributes 

age Transformer unit estimated age 
rated_kva Rated kVA 
manufacturer_code_clean Manufacturer 
manufactured_in_2012_or_after Manufactured year >= 2012 
txfmr_load_factor_12m_bucket Load factor 
txfmr_mean_peak_kva_rated_capacity_factor_12m_bucket Mean peak kVA / rated kVA 
coastal_corrosive Coastal corrosive 

Environmental 
population_density Population density 
nonburnable_land_index non-burnable land index 

Meteorological 
daily_max_temperature_avg mean daily max temperature during 

wildfire season from 2015-2020 
manufactured_in_2012_or_after* 
daily_max_temperature_avg 

Cross term using manufactured year >= 
2012 and mean daily max temperature 
during wildfire season 

 

8.2.3.2 Feature importance 

Feature importance for the asset equipment failure models was measured in two ways:  

1. feature permutation importance measured with average precision and 
2. feature Gini importance score. 

 

Feature permutation importance was implemented using the scikit-learn Python package’s 
permutation_importance method and is defined as the average precision that is lost in the model performance 
when that feature's values are randomly shuffled around. More technical details can be found in the Python 
package documentation. The permutation importance scores for each support structure model are included in 
Figure 3, and the permutation importance scores for each transformer model are included in Figure 5. 

 

Feature Gini importance was implemented using the scorer included in the Random Forest Classifier scikit-learn 
Python package. This scorer is specific to tree-based models and captures the helpfulness of the feature to the 
model by quantifying the feature’s influence on the tree splits. The Gini importance is calculated for each node 
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and then aggregated to each feature for a decision tree. Then the feature importance for each decision tree in 
the Random Forest is averaged across all trees in the Forest. This is a standard method for calculating feature 
importance for Random Forest models, and additional technical details and mathematical implementation are 
widely available online. The feature Gini importance scores for each support structure model are included in 
Figure 4, and the feature Gini importance scores for each transformer model are included in Figure 6. 

 

Asset attributes were particularly important when modeling equipment failure events. The asset’s age was the 
most important feature in each of the equipment failure models. Information about the asset’s loading was also 
a top feature. 
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Figure 55. Support Structure models permutation importance scores (left: 
support_structure_equipment_cause model and right: support_structure_equipment_electrical model). 

 

Figure 56. Support structure models feature Gini importance scores (left: 
support_structure_equipment_cause model and right: support_structure_equipment_electrical model) 
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Figure 57. Transformer models permutation importance scores 
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Figure 58. transformer models feature Gini importance scores 
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8.2.4 Algorithm  

8.2.4.1 Algorithm selection 

The following algorithms were tested on an early prototype of each asset equipment failure model prior to 
selecting the Random Forest Classifier as the top performing algorithm for both asset types. Ultimately, each 
equipment failure model was developed using Scikit-learn’s Random Forest Classifier. Random Forest Classifier is 
a tree-based algorithm that implements an ML method called bagging to combine the results of many different 
decision trees fit to sub-samples of training data into one model result, minimizing the error. Although Random 
Forest can be a black-box algorithm, model explainablity tools, such as the Shapley Python library, were used to 
better understand the resulting model tree-based fit.  

 

Table 26. support structure prototype model performance during the algorithm selection process 

Support structure 
Algorithm type 

Prototype model performance 
Test AUC 

Logistic regression 
• with up-sampling minority class 

0.50 
0.60 

Maximum entropy 0.66 
Random Forest 0.67 

 

 

Table 27. transformer unit prototype model performance during the algorithm selection process 

Transformer Unit 
Algorithm type 

Prototype model performance 
Test AUC 

Survival Model: Kaplan Meier Estimator 0.52 
Random Forest 0.60 

 

 

8.2.4.2 Hyperparameter selection 

Random Forest can overfit to the training data set, and the model hyperparameters were adjusted to force the 
algorithm to build a less complex model to prevent overfitting. The hyperparameters were identical across all 
models except for the max_depth hyperparameter, which was reduced from 4 to 3 for the 
transformer_equipment_cause model to prevent overfitting. The hyperparameters that were adjusted from the 
default algorithm hyperparameters are listed in Table 8. The default parameters are listed on the Scikit-learn 
library’s RandomForestClassifier: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html. 

 

Table 28. Model-specific hyperparameters that deviated from the scikit-learn Python package’s default 
hyperparameter values. 

 hyperparameters 
Model name class_weight max_depth n_estimators 
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support_structure_equipment_cause balanced_subsample 4 120 
support_structure_equipment_electrical balanced_subsample 4 120 

transformer_equipment_cause balanced_subsample 3 120 
transformer_equipment_leaking balanced_subsample 4 120 

 

 

8.2.4.3 Calibration 

Calibration of the Random Forest model results was required to produce annual probability values due to the 
Random Forest algorithm’s tendency to result in a bi-modal probability distribution gathered around 0.5. The 
calibration was performed using the Python Scikit-learn library’s CalibratedClassifierCV method, which uses 
cross-validation to calibrate the Random Forest model fit. Utilizing an early prototype model, Figure 7 
demonstrates the histogram for Random Forest probabilities prior to calibration, and Figure 8 shows the 
resulting histogram of probability values after CalibratedClassifierCV calibration is applied. 

  

Figure 59. histogram of Random Forest probabilities 

 

Figure 60. histogram of calibrated Random Forest probabilities 
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8.2.5 Summary of model results 

8.2.5.1 Model performance 

The resulting predictions of each model provide an asset-level probability of equipment failure outage event for 
each asset, taking into consideration asset-specific attributes. The final performance of each model on an out-of-
sample random test dataset is recorded in Error! Reference source not found..  

• The support_structure_equipment_electrical model performed very well with an out-of-sample test AUC 
score of 0.81 (Figure 10).  

• The support_structure_equipment_cause performed adequately with an out-of-sample-test AUC score 
of 0.71 (Figure 9).  

• The transformer_equipment_leaking model performed adequately with an out-of-sample AUC score of 
0.72 (Figure 12).  

• Although there was significant improvement in the transformer_equipment_cause model performance 
over the model development process, the final performance was below expectations with an AUC score 
of 0.61 (Figure 12). Future work will focus on expanding the feature engineering and algorithm selection 
experimentation process with the goal of improving performance for the transformer_equipment_cause 
model. 

 

Table 29. Summary of model performance on an out-of-sample test dataset 

Equipment failure model name Model Performance 
Test AUC 

Model Performance 
Test Top 20% Concentration Factor 

support_structure_equipment_cause 0.71 2.4 
support_structure_equipment_electrical 0.81 4.0 
transformer_equipment_cause 0.61 0.8 
transformer_equipment_leaking 0.72 2.2 
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Figure 61. support_structure_equipment_cause model AUC performance on train and test data set 

 

 

Figure 62. support_structure_equipment_electrical model AUC performance on train and test data set 
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Figure 63. transformer_equipment_cause model AUC performance on train and test data set 

 

 

Figure 64. transformer_equipment_leaking model AUC performance on train and test data set 

 

8.2.5.2 Model benefits 

The equipment failure model results proved to provide adequate model performance and flexible model output 
for the first generation of asset-based equipment failure models. Notable benefits included: 
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• Asset based. The model predicts the probability the asset will experience an equipment failure outage 
event. This tabular asset-level output can be aggregated to provide pixel-level probabilities so that it can 
be combined with other subsets to form a composite. 

• Asset attribute focused. Since the models are asset-based, asset-specific attributes can influence the 
likelihood of equipment failure. As summarized in the feature selection section below, asset attributes 
were the most influential features in the model algorithm. The influence of asset attributes aligned with 
the equipment failure causal pathway, which helped promote trust and understanding by the model’s 
end users.  

• Mitigation aligned. Model covariates include asset attributes related to the mitigation programs utilizing 
the model. For example, the asset age is the top performing feature in all models, which is reset to zero 
once the asset is replaced as part of the asset replacement work planning. As assets are replaced, the 
resulting model probability output will decrease since the model features are aligned with the mitigation 
work. 

• Temporally aware. The training data is structured into asset-years, which track whether there were one 
or more equipment failure events for each asset each fire season. The asset attributes during the year in 
which the equipment failure occurs are used to train the model. Thus, attributes can be time varying 
(e.g. asset age, open maintenance tags, details from the last inspection, and changes in electrical 
loading), and the asset attributes at the time of failure are considered.  

• Flexible for work planning. Because model predictions are asset-based, work plans can be prioritized by 
simply joining the model results based on the asset primary key – no allocation of pixel-based risk to 
assets or spatial analyses are required. Alternatively, the asset-based results can be summed to the pixel 
level and used for pixel-based work planning. 
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8.2.6 Summary of Mitigations Methodology 

Incorporating mitigation efficacy estimates into the model results allows the associated mitigation program to 
separate baseline risk into mitigatable risk and the residual risk remaining after mitigation. The mitigatable risk 
can be used to prioritize assets that the mitigation program has a higher efficacy for to promote risk spend 
efficiency (RSE). It also allows for identification of where the efficacy is low and the residual risk may remain high 
even after mitigation and a different mitigation may be more effective. The mitigation efficacy for pole 
replacement and transformer replacement were estimated utilizing the asset-specific attributes associated with 
each probability result. The approach specific to each model asset type is summarized in the following 
subsections. 

8.2.6.1 Support structure mitigations 

The support_structure_equipment_cause model was used for prioritizing pole replacement work planning, which 
is aimed at replacing poles that have been identified during the inspections process as requiring replacement 
due to a structural deficiency. The efficacy of pole replacement in the following year was estimated based on a 
review of historically replaced poles’ annual failure rate in the year following replacement and the model 
algorithm’s utilization of the pole replacement-related features. This mitigation efficacy estimation approach 
was labeled the “Similarity Method”.  

 

The pole replacement-related features in the support_structure_equipment_cause model included the pole’s 
age, loading percent at Mcu, prior year open tag count (for B, E, F, & H tags), and the number of years since last 
invasive PT&T inspection. Each of these mitigation-related features in the model can be mitigated and set to 
zero once the pole is replaced. Since these features are some of the most influential features in the model based 
on the feature permutation importance scores, the model algorithm will significantly decrease the likelihood of 
failure once the pole is replaced.  

 

Initially, the Similarity Method buckets the population of poles into groups based on the pole replacement-
related features. The categorical buckets used to group the pole population are: 

• age 
o 0-40 years 
o >40 years 

• Percent at Mcu 
o <=31% 
o Unknown 
o >31% 

• Open tag in prior year 
o True 
o False 

• Years since last PT&T inspection 
o 0-4 
o >4 

Then each of the deficient pole groups are compared to the ideal young & healthy pole group. The ideal young & 
health pole is listed in the first row of Table 10 and is less than 40-years-old, had zero maintenance tags in the 
prior year, had a PT&T inspection within the last 4 years, and is estimated to be at less than 31% of the Mcu. A 
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recently replaced pole (i.e. a mitigated pole) always falls into this young & healthy group. The formula used to 
compare a deficient pole group to the mitigated pole group to calculate the efficacy value is: 

 

𝜀𝜀 = 1 −  
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑡𝑡𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
 

 

The resulting efficacy values for pole replacement are included in the last column of Table 10. Observe that the 
effectiveness values for replacing a pole range from 0% to 83%. More detailed documentation of the mitigation 
calculation and implementation process, can be found in the support structure model’s mitigations technical 
documentation. 

 

Table 30. Pole replacement effectiveness values for poles grouped by mitigation-related asset attribute 

Age 
(years) 

Percent 
at Mcu 

Open 
tag in 
prior 
year 

 

Number of 
years since 
last PT&T 
inspection 

Pole 
replacement 

estimated 
effectiveness 

0-40 <= 31% False 0-4 0 
0-40 <= 31% False 4+ 0.054041 
0-40 <= 31% True 0-4 0.292436 
0-40 <= 31% True 4+ 0.350737 
0-40 unknown False 0-4 0.279867 
0-40 unknown False 4+ 0.376295 
0-40 unknown True 0-4 0.513729 
0-40 unknown True 4+ 0.583575 
0-40 > 31% False 0-4 0.413562 
0-40 > 31% False 4+ 0.449270 
0-40 > 31% True 0-4 0.554744 
0-40 > 31% True 4+ 0.587601 
40+ <= 31% False 0-4 0.600210 
40+ <= 31% False 4+ 0.627793 
40+ <= 31% True 0-4 0.719409 
40+ <= 31% True 4+ 0.750524 
40+ unknown False 0-4 0.723916 
40+ unknown False 4+ 0.749747 
40+ unknown True 0-4 0.804098 
40+ unknown True 4+ 0.830226 
40+ > 31% False 0-4 0.787688 
40+ > 31% False 4+ 0.805365 
40+ > 31% True 0-4 0.825908 
40+ > 31% True 4+ 0.847246 

 

 

8.2.6.2 Transformer unit mitigations 

WMP-Discovery2023_DR_OEIS_001-Q007Atch01



114 
 

Internal  

Mitigation efficacy values for transformer replacement were developed in collaboration with transformer 
replacement SMEs and were applied to the transformer_equipment_cause model predictions to estimate and 
prioritize by the risk mitigated by replacing a transformer unit. The mitigation effectiveness values for 
transformer unit replacement were computed by first identifying a base efficacy value for a low-risk, young 
transformer. Then the base efficacy is increased for more deficient transformers by applying multipliers assigned 
by SMEs based on bucketed mitigation-related asset attributes.  

 

The base efficacy value was numerically solved to be 28% using the following formula: 

𝜖𝜖𝑏𝑏 =  1 −  
𝑟𝑟𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎
∗ � � 𝑓𝑓𝑝𝑝

𝑝𝑝∈{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}

∗
1 − 𝜖𝜖𝑏𝑏

1 − 𝑥𝑥𝑝𝑝 ∗ 𝜖𝜖𝑏𝑏
� 

 

The following multipliers were established in collaboration with transformer replacement SMEs: 

 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  �1   𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏
1.2 𝑏𝑏𝑏𝑏𝑏𝑏        

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧1   0 − 100%     

1.1 100 − 150%
1.2 150 − 200%
1.3 200 − 300%
1.4 > 300%        

 

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �
1      0.00 − 0.25
1.05 0.25 − 0.50
1.1  0.50 − 0.75
1.2  0.75 − 1.00

 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �1   ≥ 2012
1.1 < 2012 

 

And the following formula was used to calculate the efficacy for each combination of the groups listed above (40 
in total): 

 

𝜖𝜖 =  𝜖𝜖𝑏𝑏 ∗ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
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8.2.7 Utilization for work planning 

Asset-level probability results have proven to be sufficiently flexible for work planning. Several approaches to 
implement model results to prioritize work plans are to calculate: 

1. Wildfire Risk: The model results can be combined with the p(ignition|outage) model result to produce 
p(ignition) and then further combined with the Wildfire Consequence model to produce Wildfire Risk 
values.  

2. Public Safety Risk: Alternatively, the likelihood of equipment failure can be combined with Public Safety 
Consequence to produce Public Safety Risk values.  

3. Mitigated Risk: Asset-specific mitigation efficacy can be utilized to estimate the magnitude of risk 
mitigated for each asset due to a specific mitigation program. 

 

The predictions include asset-specific primary keys, which can be joined directly to lists of assets in Foundry to 
quickly prioritize mitigation work plans. Additional documentation on how the 
support_structure_equipment_cause model were used for work planning are included in Prioritization of support 
structure model results for work planning. 

 

Another advantage of providing a result for the asset itself as opposed to a pixel-level probability include the 
ability to provide variation in probability values even within a 100m x 100m pixel (see Figure 13 and Figure 14). 

  

Figure 65. Example 100m x 100m pixel contains likelihood of equipment  failure values for five poles with 
significantly different rankings (from the bottom 50% to the top 10-20%) 

  

Figure 66. Example pixel for transformer units demonstrating the variability in likelihood of equipment failure 
within a pixel (from the bottom 50% to the top 10%) 
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8.2.8 References 

1. Transformer unit technical documentation: Transformer Model Documentation.docx 
 

2. Transformer unit mitigations methodology: Transformer Effectiveness Factors.docx 
 

3. Support structure technical documentation: Technical Documentation - Support structure equipment 
failure models (structural & electrical).docx 

 

4. Methodology for support structure mitigation efficacy: Methodology for quantifying the effectiveness of 
pole mitigation programs at mitigating failures with potential for ignition.docx 
 

5. Prioritization of support structure model results for work planning: Methodology for using model results 
to prioritize support structure work plans.docx 
 

6. Scikit-learn library’s RandomForestClassifier: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
 

7. Scikit-learn library’s CalibratedClassifierCV: https://scikit-
learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html 
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8.3 Probability of Ignition Given Outage 

Model Development and Validation 

The RaDA team explored various Random Forest, XGBoosted trees, and Logistic Regression model specifications 
using 80/20% random splits of training vs. testing data and in- and out-of-sample ROC-AUC to quantify 
predictive performance and monitor for overfitting to training data. Using these metrics, it was determined that 
the tree-based methods tended to overfit the training data (significant gap in AUC between train and test – with 
test performance lagging behind training performance). With similar performance between train and test data 
and good predictive power, the logistic regression models were found to predict well out of sample. 

The RaDA team explored three logistic regression model structures of cumulative/increasing complexity. In each 
case, the RaDA team first applied Recursive Feature Elimination (RFE) as implemented in scikit-learn to eliminate 
poorly performing covariates and reduce the risk of overfitting to training data. The model formulations tested 
were: 

(1) The subset-only model consisting of subset fixed effects only – allowing each subset to have its own 
rate of ignitions per outage. This is equivalent of calculating the rate of ignitions per outage within each 
subset’s target set data. 

(2) The spatially varying model: 1, plus spatially varying covariates, like vegetation and prevailing weather 
and fuel moisture assigned by location to every grid pixel. 

(3) The time varying model: 2, with the addition of daily time-varying elements such as weather and 
weather-dependent covariates.  

 

(1) The subset-only model uses only subset_name indicators to predict the arrival rate of ignitions per outage 
for each subset. This approach surfaces significantly different ignition rates for each of the subsets. Recall that 
subsets correspond to different voltages, root causes, and equipment types, so this result affirms that voltage, 
cause, and equipment type play significant roles in determining how dangerous a given outage is. 

Note that when using only subset indicators, the arrival rates are constant for each subset, which means the 
predictions are independent of location and constant over time. Because the likelihood of an outage leading to 
an ignition should vary spatially, the RaDA team moved beyond the basic model to look at a model that varies 
spatially across PG&E’s landscape.  

(2) the spatially varying model: 

This model employed the covariase found in 1 plus 'hftd', 'impervious_mean', 
'fpi_fire_season_dfm_1000hr_avg', 'satellite_tree_count', and ‘fpi_v3_veg_types’ which included percentages 
that fall into the following categories: ‘fpi_v3_urban’, ‘fpi_v3_grass’, ‘fpi_v3_shrub’, ‘fpi_v3_timber_litter’, 
‘fpi_v3_timber_understory’. The fpi_v3 prefix refers to the data source being the same PG&E meteorology data 
using in the PSPS-facing FPI model. 

This formulation introduces vegetation and land use data as well as average long term windspeed, weather, and 
fuel moisture values derived from PG&E meteorology data. These values are pulled in for each grid location 
using spatial raster data. This differentiates each location from the others and captures some of the pre-
conditions for the viability of ignitions, like the presence of fuels.  

One drawback of this model, however, is that while it differentiates across space, it cannot account for daily or 
monthly fluctuations in such ignition-relevant factors as wind and fuel moisture. Although outages happen at a 
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specific time and location where weather conditions, including wind and fuel moisture at the time and location 
of the event vary, our time invariant model is only able to include average, max, min or other aggregated data 
for the time period spanning entire fire seasons. 

Figure 67. Spatial p(i|o) test ROC 

 

(3) The time varying model: 

'ign_ind ~ subset_name + hftd + impervious_mean + fpi_fire_season_dfm_1000hr_avg + 
satellite_tree_count + fpi_v3_grass + fpi_v3_timber_litter + fpi_v3_shrub + fpi_v3_timber_understory 
+ fpi_v3_urban + fpi_v3_event_dfm_10hr + fpi_v3_event_dfm_1000hr + fpi_v3_event_ws_mph' 

This model adds fpi_v3_event_dfm_10hr, fpi_v3_event_dfm_10hr, fpi_v3_event_dfm_1000hr, 
fpi_v3_event_ws_mph (dry fuel moisture over different time periods and wind speeds) for all days/locations to 
fit the model. This model considers the conditions of every historic weather day with at least one outage 
separately and then “marginalizes” the days into a fire-season probability for every location. Thus, the minority 
of days with elevated rates of outages and elevated fire “susceptibility” via dry fuels and wind contribute more 
to the marginalized fire season probabilities than do the “regular” days. 

Note that it is straight forward to look up wind speeds or fuel moisture for the day and location of a given 
outage. That weather data is sufficient to train the p(ignition|outage) model using time-varying conditions, 
however, the p(outage) estimates used for prediction are subset-specific annual fire season estimates without 
specific daily timing. To adopt time varying conditions as elements of the p(ignition|outage) model, it is 
necessary to predict p(ignition|outage) for all days of the fire season, multiply the value for each day by the 
probability (in time) of outages for each day, and sum across all days. This process, known as marginalization, 
provides a framework for summing daily probabilities into seasonal probabilities, where the daily time 
dimension of the data is said to have been marginalized out.  
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We define L as location specific covariates and T as the covariates that vary in both location and time, with a 
daily timestep, where t stands for each day in the historical data set of outages. We note that using L and T in 
our logistic regression, gives us the ability to estimate P(i|o;L,T). We want separate estimates for all locations, 
but only a single seasonal estimate at each location, thus P(i|o;L). Here P(o;T=t) is the historical probability of an 
outage from the given subset of outages on day t, which can be derived from historical data. Note that by 
multiplying by the probability of outage for a given day, marginalization places greater weight on weather 
conditions that occur on days that see elevated rates of outages – like windstorms. 
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8.4 Consequence 
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8.5 Applying Mitigation Effectiveness to Ignition Probability and Wildfire Risk 

Section 3.6, Wildfire Risk Mitigation, presents the details of estimating the effectiveness of mitigation, for each 
of four PG&E mitigation programs. Within each composite program, this results in an effectiveness factor ζ𝑆𝑆 for 
each of the subsets, that comprise it.  

The prediction models operate at the unit of a pixel. The subset effectiveness factor ζ𝑆𝑆, is used to derive the 
mitigated probability and risk estimates, in each pixel, for each composite.  

Denoting, 

𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:   subset 𝑆𝑆 prediction of ignition probability in pixel 𝑖𝑖 

 

With 𝐶𝐶𝑖𝑖  the wildfire consequence in pixel 𝑖𝑖, the wildfire risk in pixel 𝑖𝑖 is given by, 

𝑅𝑅𝑆𝑆,𝑖𝑖 = 𝐶𝐶𝑖𝑖 ∗ 𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 

Using the weighted mitigation effectiveness for each subset, the potential reduction in the probability and risk, 
is,   

Δ𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ζ𝑆𝑆 × 𝑃𝑃𝑆𝑆,𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Δ𝑅𝑅𝑆𝑆,𝑖𝑖 = ζ𝑆𝑆 × 𝑅𝑅𝑆𝑆,𝑖𝑖 

 

From obvious arithmetic, the corresponding residual probability and risk values are 

 

ℙ𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑆𝑆,𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −  Δ𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  (1 − 𝜁𝜁𝑆𝑆) × 𝑃𝑃𝑆𝑆,𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

ℝ𝑆𝑆,𝑖𝑖 =  𝑅𝑅𝑆𝑆,𝑖𝑖  −  Δ𝑅𝑅𝑆𝑆,𝑖𝑖 =  (1 − 𝜁𝜁𝑆𝑆) × 𝑅𝑅𝑆𝑆,𝑖𝑖 

 

The derivation of the probability (or risk) from all the subsets, in a given pixel 𝑖𝑖 is, 

𝑃𝑃𝑖𝑖 = 1 − ��1 − 𝑃𝑃𝑆𝑆,𝑖𝑖�
𝑆𝑆

≈ � 𝑃𝑃𝑆𝑆,𝑖𝑖
𝑆𝑆

 

since, 𝑃𝑃𝑆𝑆,𝑖𝑖 ≪ 1.0 

  

Therefore, the expectation and risk values, and mitigations in pixel 𝑖𝑖 are, 

𝑃𝑃𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  � 𝑃𝑃𝑆𝑆,𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖            
𝑆𝑆

;        ∆𝑃𝑃𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  � ∆𝑃𝑃𝑆𝑆,𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖          
𝑆𝑆
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Internal  

𝑅𝑅𝑖𝑖 =  � 𝑅𝑅𝑆𝑆,𝑖𝑖             
𝑆𝑆

;        ∆𝑅𝑅𝑖𝑖 =  � ∆𝑅𝑅𝑆𝑆,𝑖𝑖           
𝑆𝑆

 

 

We calibrate the model predictions of ignitions to the annual expectation of the number of events, viz. the 
annual average over the years in the training set. Let’s use the lowercase 𝑛𝑛 to denote the annual expectation 
values. The model outputs are calibrated so that, 

� 𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖

≈ 𝑛𝑛𝑆𝑆
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝑁𝑁𝑆𝑆
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛. 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 

 

Finally, summing over all the pixels and subsets, provides system-wide estimates for the distribution grid. The 
predictions of the bare probability/risk values, potential reductions due to mitigations, and residuals are, 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  � 𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆,𝑖𝑖

 

 

∆𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  � ∆𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆,𝑖𝑖

=  � 𝜁𝜁𝑆𝑆 × 𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆,𝑖𝑖

 

 

ℙ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =     � ℙ𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆,𝑖𝑖

=  �(1 − 𝜁𝜁𝑆𝑆) × 𝑃𝑃𝑆𝑆,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆,𝑖𝑖

  

 

𝑅𝑅 =   � 𝑅𝑅𝑆𝑆,𝑖𝑖
𝑆𝑆,𝑖𝑖

 

  
∆𝑅𝑅 =  � ∆𝑅𝑅𝑆𝑆,𝑖𝑖  

𝑆𝑆,𝑖𝑖

=  � 𝜁𝜁𝑆𝑆 ×  𝑅𝑅𝑆𝑆,𝑖𝑖
𝑆𝑆,𝑖𝑖

 

 
ℝ =  � ℝ𝑆𝑆,𝑖𝑖  

𝑆𝑆,𝑖𝑖

=  �(1 −  𝜁𝜁𝑆𝑆) ×  𝑅𝑅𝑆𝑆,𝑖𝑖
𝑆𝑆,𝑖𝑖

 

 

Therefore, due to the aforementioned calibration, the model predicts the number of ignition events system-
wide, in a typical year, to decrease from  𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  to  ℙ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
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