

& WILDFIRE SAFETY

OEIS Risk Spend Efficiency Workshop

December 9, 2021

Agenda

SDGE

- 1. RSE Calculation Methodology
- 2. RSE Estimate Verification Process
- 3. RSE Estimate and Initiative-Selection Process
- 4. Comprehensive Spreadsheet

What is Risk Spend Efficiency (RSE)?

RSE is a calculation of the cost effectiveness of a mitigation. Similar to a cost/benefit analysis using risk points; also known as "risk reduction per dollar spent"

Risk Reduction = (Pre-Mitigation LoRE – Post-Mitigation LoRE)* CoRE Lifetime of Benefit = Net Present Value risk reduction adjustment factor Total Cost = Forecast Cost of the Mitigation

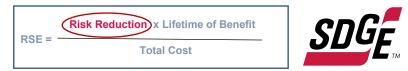
SDGE

Balancing Risk Reduction and Costs

RSE Calculation Methodology Overview

Step by Step Process:

- 1. Baseline risk score calculation
- 2. Risk reduction calculation
- 3. Net present value (Lifetime of Benefit) risk reduction calculation
- 4. Total cost calculation

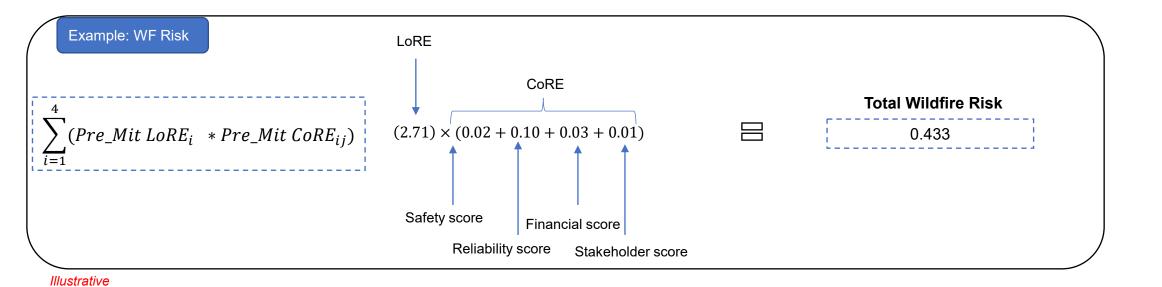

5.

RSE = RSE = Total Cost

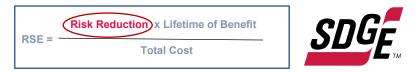
				Un	derground		Covere	d Condu	ctor
Segment	WF Risk	PSPS Risk	Total Risk	Total Risk Reduction	Total Cost	RSE	Total Risk Reduction	Total Cost	RSE
Segment 1	15	5	20	18	\$15M	55	10	\$7M	85
Segment 2	23	15	38	30	\$30M	45	15	\$12M	60
Segment n	10	8	18	16	\$10M	60	5	\$5M	35
lustrative segment	-mitigation table								

Risk Score Calculation

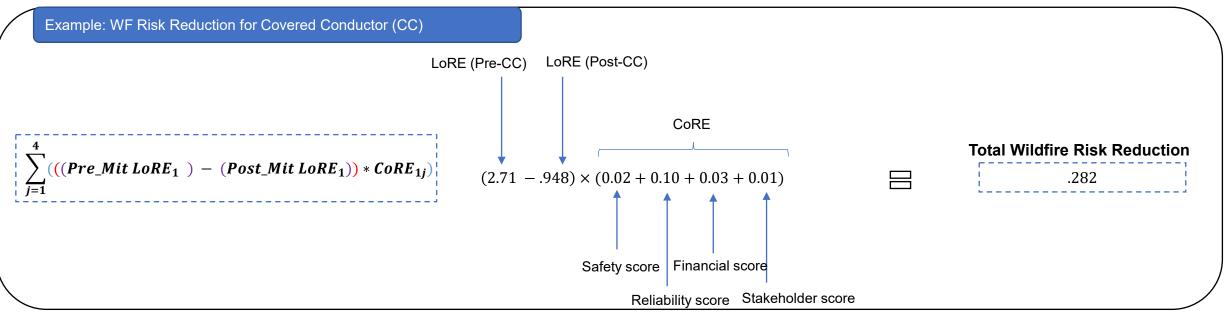
Risk Score = Likelihood of Risk Event (LoRE) × Consequence of Risk Event (CoRE)


System Risk Score

n = number of system risk elements considered (e.g. WF risk, PSPS risk, etc.),


i = ranges through the system risk elements assessed

= $\sum_{i=1}^{n} \sum_{j=1}^{4} (Pre_Mit \ LoRE_i \ * Pre_Mit \ CoRE_{ij})$


j = ranges through the 4 attributes of the MAVF framework (safety, financial, reliability, and stakeholder satisfaction)

Risk Score Reduction Value Determination

Illustrative

Post-Mitigation LoRE Determination

of

Calculation of Ignition Rate Reduction

- Utilizing efficacy studies, ignition counts, and/or SME input to produce ignition rate reductions for each mitigation
- Adjustment factor multiplied by Pre-Mit LoRE value to account for ignition rate reduction associated to mitigation

Example: Traditional Hardening (TH) Efficacy Study Results										Example: Covered C	Conductor (CC) SME-as	ssisted Ignition Reduction Dete	rmination
		Fault	s Before	and Af	fter Har	dening				Mode	Count of Ignitions	Covered Conductor Effect (Risk Reduction%)	Post Covered Conductor - Adjusted Count Ignitions
										Animal contact	5	90%	0.5
Faults after hardening	T				7.49					Balloon contact	8	90%	0.8
auts after fial definite	5				7.45					Vegetation contact	10	90%	1
										Vehicle contact	14	20%	11.2
										Other contact	4	10%	3.6
ults before hardening	g							13.50		Other	2	10%	1.8
										Equipment - All	34	80%	6.8
										Unknown	3	10%	2.7
	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	TOTAL	80	65%	28.4

44.5% Reduction of Faults that could lead to an Ignition

65% Reduction of Ignition

Post-Mitigation LoRE determination

*Post_Mit LoRE = Pre_Mit LoRE * Ignition Rate Reduction*

Example: LoRE Traditional Hardening determination

Given a Pre-Mit LoRE of **2.71** and a Traditional Hardening ignition rate reduction of **44.5%**

Post_Mit LoRE = $2.71 \times (1 - 0.445)$ = 1.504

Illustrative

Example: LoRE Covered Conductor determination

Given a Pre-Mit LoRE of **2.71** and a subjective Covered Conductor ignition rate reduction of **65%**

Post_Mit LoRE =
$$2.71 \times (1 - 0.65)$$

= .948

Illustrative

Net Present Value (Lifetime of Benefit)

Net Present Value Determination: Adjustment factor to better assess benefits accrued over the lifetime of the mitigation

Utilizing a Present Value formula, the Lifetime of Benefit factor is calculated as follows:

Lifetime of Benefit factor =
$$\sum_{i=0}^{n} \frac{1}{(1+r)^{i}}$$

Lifetime Risk Reduction = Risk Reduction x Lifetime of Benefit Factor

n = Total number of years of benefit expected

i = cycles through years of accrued benefits

r = rate at which benefit is depreciated year to year

Example: Net Present Value Determination of Covered Conductor (CC) WF Risk Reduction

40 years of expected benefits, 3% year-to-year depreciated benefit

if etime Risk Reduction =
$$2.82 \times 10^{-1} \times \sum_{i=0}^{40} \frac{1}{(1+0.03)^i}$$

$$= 0.282 \times 23.11$$

= 6.52

Illustrative

L

Total Cost Determination

Total Cost : Total \$ amount cost of the mitigation effort

Total Cost (\$) = Number of Units * Cost Per Unit

Calculated based on estimated* unit costs (For example, cost per mile, cost per asset, etc.)

Example: Total Cost of Covered Conductor (CC)

Assuming an estimated Covered Conductor cost per mile of \$1.5M, and Segment A being 0.46 miles in length Total Cost (k) = Number of Miles * CC Cost Per Mile = 0.46 × \$1,500,000

= \$690k

Illustrative

*Estimates calculated based off consultation with Subject Matter Experts, Project Planning teams, System Hardening teams, etc.

RSE Calculation Summary Table

Example

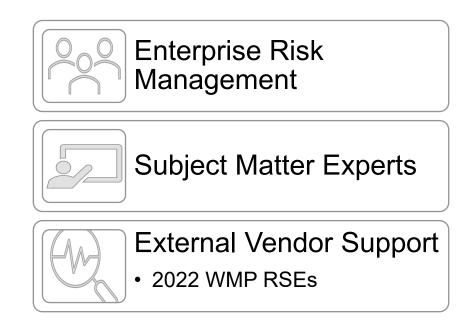
	Miles/Quantity	Pre-Mit WF LoRE	WF CoRE	WF Risk Score	Cost Per Miles/Unit	Post-Mit WF LoRE	WF Risk Reduction	Lifetime Benefit Factor ¹	Lifetime WF Risk Reduction	Total Cost	WF RSE
Covered Conductor	0.46	2.71	0.16	0.433	\$1.5M	0.95	0.282	23.11	6.52	\$690k	9.45 * 10^-6
Traditional Hardening	0.46	2.71	0.16	0.433	\$1M	1.51	0.192	23.11	4.44	\$460k	9.65 * 10^-6
Hot Line Clamps	100	2.71	0.16	0.433	\$1k	1.80	0.1456	17.94	2.61	\$100k	2.61 * 10^-5
Illustrative											

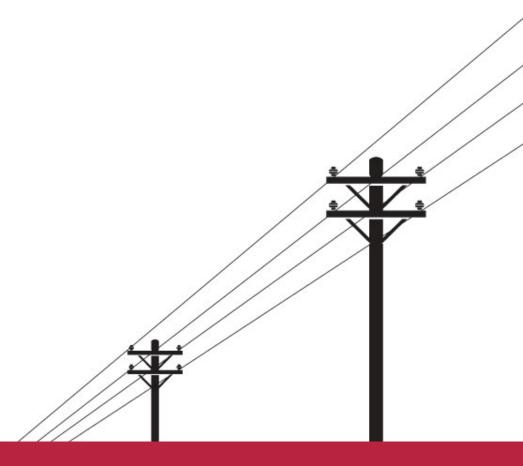
¹Lifetime benefit factor uses 3% discount rate based on federal recommendations at x # of years of benefit (40 years for CC & TH, 25 years for HLC)

Assumptions

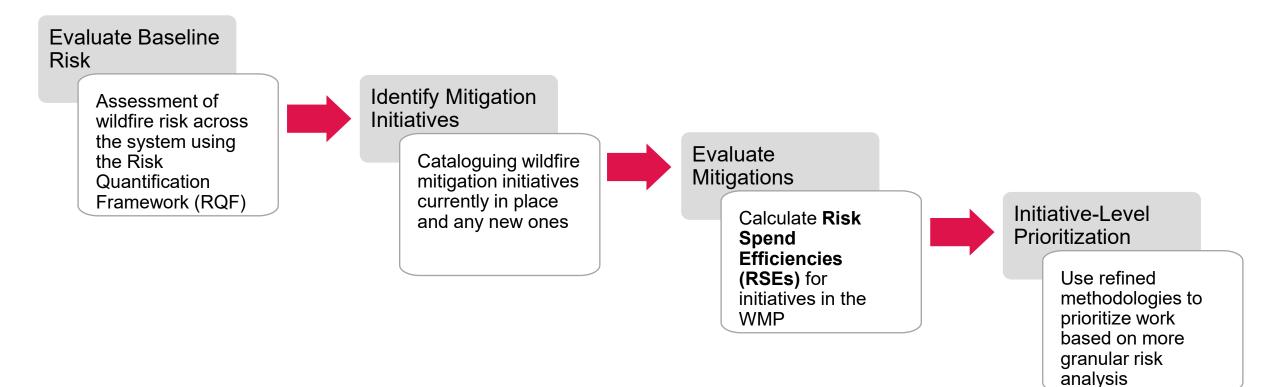
- Assumptions may vary from mitigation to mitigation
- Costs per unit
- Mitigation effectiveness
- Lifetime benefit

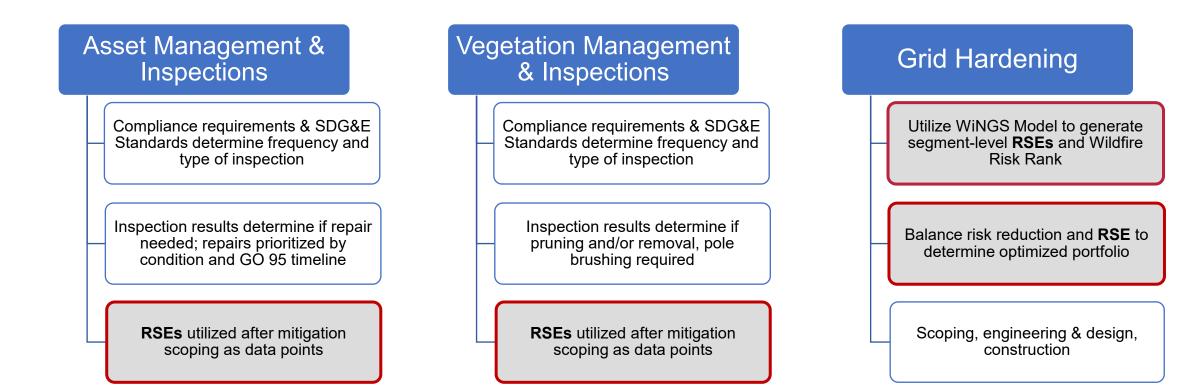
Anticipated changes to RSE calculation methodology from now to 2023 WMP




- Update and improve risk assessment
 - Change in data sets and assumptions, as more data becomes available
 - o Change in logic or analytical approach as different techniques are learned
 - Updated risk models as technology improves
 - Better unit cost estimation
- Incorporate life cycle costs and benefits of avoided costs resulting from grid hardening
- Continue to evaluate overall framework with input from stakeholders and other proceedings

RSE Estimate Verification Process


- SDG&E does not currently use confidence intervals and uncertainty in its assessments
- Continuing to evolve, expand and improve under the guidelines set forth by the CPUC
- RSE Estimate Verification Process:


Risk-Informed Decision-Making Approach

RSEs in Initiative-Selection Process

WiNGS Model Inputs and Outputs

Outputs Segment Risk Ranking Consequence WRRM conditional impact Segment RSE Analysis • • • • 1001-1140R 442-2R 334-455 335-56R 442-16R 353-902F 79-785 68-42 176-200F C 8280 C 8357 1081-38AE 222-7R 222-136AR 222-72 222-136AR 222-73R 222-136AR 221-238A 221-238 0030 **Portfolio Analysis** Consequence Ρ5 Number of customers **Total Risk Reduction** Customer type Ρ4 Outage duration Ρ1 P2

Inputs

- Likelihood
- Historic ignitions ٠
- Wind speed •
- Tree strikes •

Wildfire

PSPS

- Hardening status
- Vegetation density •
- Critical Health Index (CHI) ٠
- Conductor age •

Likelihood

Annual RFW data

patterns

٠

•

Historic wind speed

Circuit connectivity

Total Cost (\$k)

Wildfire – WiNGS Grid Hardening Scope

Long-Term Objective: Maximize wildfire risk reduction while selecting cost-effective mitigations

Segments Selection and Prioritization

- Evaluate and compare baseline risk across > 600 segments
- Evaluate and compare RSE alternatives
- Identify top segments to prioritize grid hardening solutions on

Outcome

- Identified ~150 segments to prioritize grid hardening mitigations on
- Remaining segments to be monitored and re-evaluated for other mitigation needs

Balancing Risk Reduction and Costs

Long Term Distribution Hardening Underground and Covered Conductor

Initiative Selection Decision-Making Factors

RSEs are not the only criteria for determination of mitigation initiative

Inspection & Replacement Cycles

- Compliance requirements and SDG&E standards for Asset Management
- Compliance requirements and SDG&E standards for Vegetation Management

Scoping Factors

- Desktop Feasibility results: geography, environmental, permitting, easements, existing infrastructure
- SME, Stakeholder input

Engineering & Design Factors

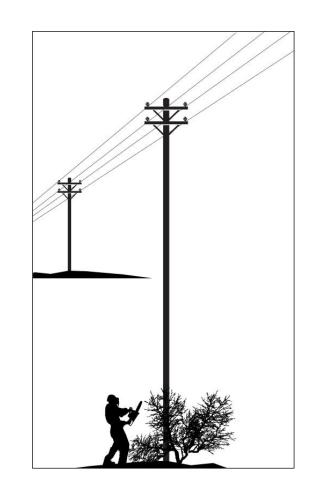
- Survey results
- Agency and communication infrastructure provider coordination

Construction Factors

- Availability of labor, raw materials
- Ability to work through land and permitting constraints

Anticipated Changes to How RSE Estimates are Used for Mitigation Initiative Selection for 2023 WMP

Improve Accuracy of RSE Values

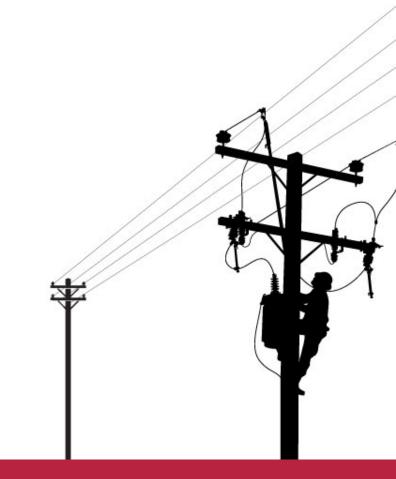

- Continuous enhancements to WiNGS Model
- Incorporate life cycle costs and benefits of avoided costs resulting from grid hardening
- Continuous improvement of PSPS risk quantification

Develop Additional Tool* for Mitigation Initiative Selection

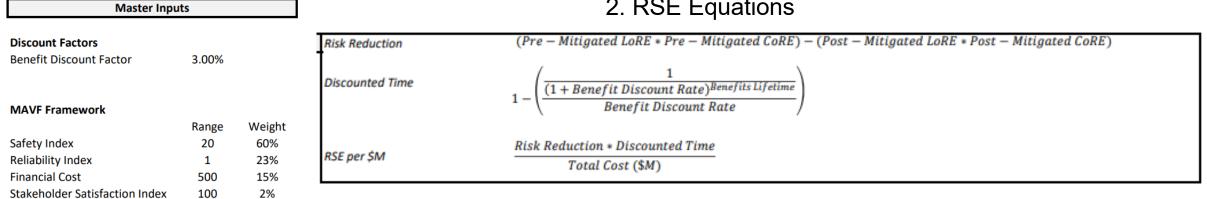
• Develop enterprise-wide capital allocation and planning tool

Explore Opportunities to Apply RSEs

 Look for potential areas beyond grid hardening where similar RSE-based approach adds value to mitigation initiative selection


Comprehensive Spreadsheet

December 17th report will include RSE summary spreadsheet



Appendix

Comprehensive Spreadsheet

1. MAVF Inputs for Risk Scoring

3. RSE Scoring Summary

0	Control/Mitigation Name	Lifeti Bene		Total Cost (5k)	S Change in PSPS CoRE	PSPS LoRE	PSPS Pre- Mitigated CoRE	PSPS CoRE Safety	PSPS CoRE Reliability	PSPS CoRE Financial	PSPS CoRE Stakeholder Satisfaction	PSPS PON Mitigated CoRE	PSPS Risk Reduction	R Change in Wildfire LoRE	Wildfire Pre- Mitigated LORE	Wildfire CoRE	Wildfire Safety CoRE	Wildfire Reliability CoRE	Wildfire Financial CoRE	Wildfire Stakeholder Satisfaction CoRE	Additionational	Wildfire Risk Reduction	Risk	Discounted Time	RSE per \$Million	See	urce
SDG&E-Risk-1-C3-T3	Wireless Fault Indicators (Non-HFTD)	5	5	616	0.00%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.55%	9.20	30.22	10.00	2.15	15.81	2.26	7.31	57,11	57.11	17 41	1516.03	Reliability Data (2015-2019),2021	WMP Update Section 4.4.2.1
SDG&E-Risk-1-C6/M1-T2	SCADA Capacitors (HFTD Tier 2)	25	5	1791	0.00%	4.00	351.80	4.00	246.29	41.51	60.00	351.80	0.00	0.92%	6.84	622.91	218.72	47.08	345.83	11.28	6.78	39.24	39.24	17.41	381 49	2021 WMP Update Section 4.4.2.	1 SME, GIS Database
SDG&E-Risk-1-C7/M2-T1	Overheid Distribution Fire Hardening – Covered Conductor (HFTD Tier 3)	40	3	340511	0.01%	4.00	820.87	9.33	574.67	96.87	140.00	820.76	0.43	6.61%	5.13	1409.28	499.93	107.61	790.46	11.28	4.79	477.95	471.39	23.1	32.47	2021 WMP Update Section 4.4.2. 4.4.2.1,SME	3, 2021 WMP Update Section
SDG&E-Risk-1-C7/M2-T2	Overhead Distribution Fire Hardening – Covered Conductor (HFTD Tier 2)	40	3	74746	0.00%	4.00	351.80	4.00	246.29	41.51	60.00	351.80	0.00	1.04%	6.84	622.91	218.72	47.08	345.83	11.28	6.77	44.11	44,11	23.11	13.64	2021 WMP Update Section 4.4.2. 4.4.2.1,SME	3, 2021 WMP Update Section
SDG&E-Risk-1-CB/M3-T2	Expulsion Fuse Replacement (HFTD Tier 2)	25	5	3079	0.00%	4.00	351.80	4.00	246.29	41.51	60.00	351.80	0.00	0.77%	6.84	622.91	218.72	47.08	345.83	11.28	6.79	33.01	33.01	17.4	186.71	GIS database 2021 WMP Update	Section 4.4.2.1
SDG&E-Risk-1-C9/M4-T1	PSPS Sectionalizing (HFTD Tier 3)	20		536	2.32%	4.00	820.87	9.33	574.67	96.87	140.00	801.85	76.0	0.00%	5.13	1409.28	499.93	107.61	790.46	11.28	5.13	0.00	76.09	14.8	2112.33	Internal data, SME	
SDG&E-Risk-1-C9/M4-T2 SDG&E-Risk-1-C10/M5-T2	PSPS Sectionalizing (HFTD Tier 2) Neroerids (HFTD Tier 2)	20)	4089	20.76%	4.00	351.80		246.29	41.51	60.00	278.78 330.32	292.07 85.91	0.00%	6.84	622.91	218.72	7.08	345.83	11.28	6.84	0.01	292 07 85.91	14.88	1062 66	Internal data, SME Internal data, SME	+
	ion Name	fetim	ït	Total Cost	P		CoRE	& Lof	RE by	MAV		egory	PSPS Risk	\langle	Wildfir	e CoF	RE & L	oRE	by MA	AVF C	atego W Ri	/ildfire isk educt	; ;	viscou ime Risk		So	burce

2. RSE Equations

Comprehensive Spreadsheet

Example from 2021 RAMP RSE Summary

ID	Control/Mitigation Name	2021 WMP Initiative	Lifetime Benefit	Total Cost (\$k)	% Change in PSPS CoRE	PSPS LoRE	PSPS Pre- Mitigated CoRE	PSPS CoRE Safety	PSPS CoRE Reliability	PSPS CoRE Financial	PSPS CoRE Stakeholder Satisfaction	MITIMATON	PSPS Risk Reduction
SDG&E-Risk-1-C3- T3	Wireless Fault Indicators (Non HFTD)	7.3.2.3	25	\$656	0.00%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SDG&E-Risk-1- C6/M1-T2	SCADA Capacitors (HFTD Tier 2)	7.3.3.1	25	\$1,791	0.00%	4.00	351.80	4.00	246.29	41.51	60.00	351.80	0.00
SDG&E-Risk-1- C12/M7-T1	Hotline Clamps (HFTD Tier 3)	7.3.3.10	25	\$4,503	0.00%	4.00	820.87	9.33	574.67	96.87	140.00	820.87	0.00
SDG&E-Risk-1- C16/M11-T1	Strategic Undergrounding (HFTD Tier 3)	7.3.3.16	40	\$629,679	2.49%	4.00	820.87	9.33	574.67	96.87	140.00	800.44	81.69

	% Change in Wildfire LoRE	Wildfire Pre- Mitigated LoRE	Wildfire CoRE	Wildfire Safety CoRE	Wildfire Reliability CoRE	Wildfire Financial CoRE	Wildfire Stakeholder Satisfaction CoRE	Mitigatod	Wildfire Risk Reduction	Poduction	Discounted Time	RSE per \$Million	Source
Wireless Fault Indicators (Non HFTD)	20.55%	9.20	30.22	10.00	2.15	15.81	2.26	7.31	57.11	57.11	17.41	1516.03	Reliability Data (2015-2019), 2021 WMP Update Section 4.4.2.1
SCADA Capacitors (HFTD Tier 2)	0.92%	6.84	622.91	218.72	47.08	345.83	11.28	6.78	39.24	39.24	17341.00	381.49	2021 WMP Update Section 4.4.2.1, SME, GIS Database
Hotline Clamps (HFTD Tier 3)	0.33%	5.13	1409.28	499.93	107.61	790.46	11.28	5.11	23.96	23.96	17.41	92.64	2021 WMP Update Section 4.4.2.1 & Table 7.1
Strategic Undergrounding (HFTD Tier 3)	57.60%	5.13	1409.28	499.93	107.61	790.46	11.28	2.17	4246.45	4246.15	23.11		Ignition Database (2014-2019), 2021 WMP Update Section 4.4.2.3, 2021 WMP Update Section 4.4.2.1

Post-Mitigation LoRE determination

*Post_Mit LoRE = Pre_Mit LoRE * Ignition Rate Reduction*

The post mitigation LoRE for Covered Conductor is based on a similar methodology as the Traditional Hardening efficacy studies shown in the previous slide.

Example: LoRE Covered Conductor determination Given a Pre-Mit LoRE of 2.71 and a subjective Covered Conductor ignition rate reduction of 65% Post_Mit LoRE = $2.71 \times (1 - 0.65)$ = .948

Illustrative

Purpose of this workshop

Energy Safety intends to oversee a joint effort across utilities to collaborate on RSE calculation methodologies and utilization. The workshop provides an opportunity for stakeholder input regarding the focus areas of the RSE calculation methodologies and utilization.

-	-m	
	الله <u>Worksho</u> r	<u>o Timeline</u>
	9:00 am – 9:10 am	Introduction
	9:10 am – 10:10 am	PG&E Presentation
	10:10 am – 11:10 am	SCE Presentation
	11:10 am – 11:30 am	Break
	11:30 am – 12:30 pm	SDG&E Presentation
	12:30 pm – 1:30 pm	Lunch
	1:30 pm – 3:00 pm	Q&A Session
	3:00 pm – 3:20 pm	Break
	3:20 pm – 4:20 pm	RSE Expert Panel
	4:20 pm – 4:30 pm	Closing Remarks

Links:

- 2021 RSE Workshop Presentation Structure
- TN10441 20211108T151246 Risk Spend Efficiency Workshop Notice