

Wildfire Risk Modeling Workshop

October 5, 2021

Paul Marconi, President, Treasurer, Secretary, & Safety Committee Chairman, BVES, Inc.

Service Territory Overview

Powering The Mountain Since 1929

Slide 2

Location: 32 square miles of rural and mountainous terrain at approximately 7,000 ft. in San Bernardino Mountains (80 miles East of Los Angeles).

- Heavy tree and vegetation density and mostly dry environment (80.5%).
- Entire Service Territory in the High Fire Threat District (Tiers 2 & 3).
- Entire Service Territory in the Heavy Loading District (>3,000 ft.).

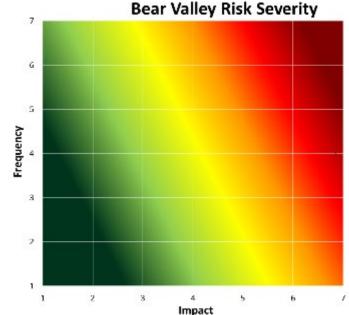
Key jurisdictions: County of San Bernardino, City of Big Bear Lake, US Forest Service.

Customers: 24,604 total [23,091 residential and 1,513 commercial].

Summary of Risk Models

- Risk Safety Model Approach for Small and Multi-jurisdictional Utilities (SMJUs).
- Fire Safety Matrix
- Advanced Ignition Probability and Risk Modeling

Risk Safety Model Approach for Small and Multi-jurisdictional Utilities (SMJUs)



Risk Model for SMJUs

- Decision 19-04-020 of April 25, 2019, Phase Two Decision Adopting Risk Spending Accountability Report Requirements and Safety Performance Metrics for Investor-owned Utilities and Adopting a Safety Model Approach for Small and Multi-jurisdictional Utilities provides requirements for SMJU risk modeling.
- 7x7 Logarithmic Risk Matrix

 (Frequency vs. Impacts)
- Impact weights:
 - Public and Employee Safety
 - \circ Reliability
 - o Environmental
 - Quality of Service
 - \circ Compliance
- Analyzed 54 mitigations
 - Cost of Project/Program
 - Period of Project/Program

Risk Score = Frequency * SUM i=1 to 5 (CategoryWeight i x 10^Impact i)													
Frequency	Frequency Years (Events/Year)	Frequency Years (Events/Year)	Frequency Value			Negligible(1)	Minor(2)	Moderate(3)	Major(4)	Extensive(5)	Severe(6)	Catastrophic(7)	
	[Min rate]	[Max rate]				1	2	3	4	5	6	7	
> 10 times per year	10	100	31.6228	7	0	316.23	3,162.28	31,622.78	316,227.77	3,162,277.66	31,622,776.60	316,227,766.02	7
1 - 10 times per year	1	10	3.1623	6	0	31.62	316.23	3,162.28	31,622.78	316,227.77	3,162,277.66	31,622,776.60	6
Once every 1 - 3 years	0.3300	1.0000	0.5745	5	0	5.74	57.45	574.46	5,744.56	57,445.63	574,456.26	5,744,562.65	5
Once every 3 - 10 years	0.1000	0.3333	0.1826	4	0	1.83	18.26	182.57	1,825.74	18,257.42	182,574.19	1,825,741.86	4
Once every 10 - 30 years	0.0333	0.1000	0.0577	3	0	0.58	5.77	57.74	577.35	5,773.50	57,735.03	577,350.27	3
Once every 30 - 100 years	0.0100	0.0333	0.0183	2	0	0.18	1.83	18.26	182.57	1,825.74	18,257.42	182,574.19	2
Once every 100+ Years	0.0033	0.0100	0.0058	1	0	0.06	0.58	5.77	57.74	577.35	5,773.50	57,735.03	1
				0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
					0	1	2	3	4	5	6	7	



Powering The Mountain Since 1929

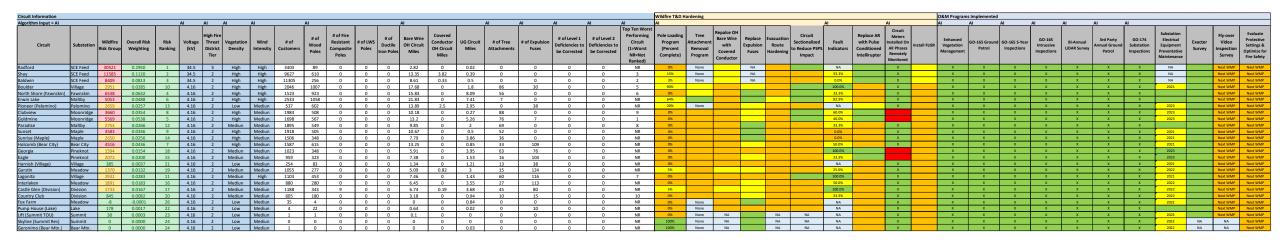
Slide 5

Risk Spend Ratio

• Model output: • Risk reduction • Risk spend ration

Powering The Mountain Since 1929

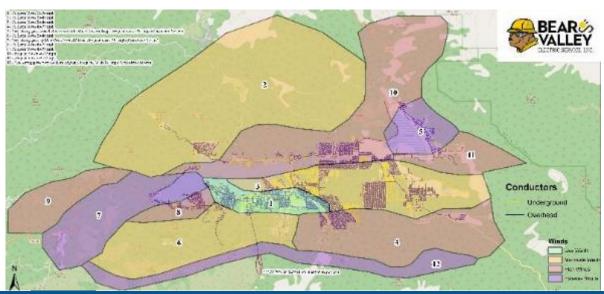
Slide 6


Fire Safety Matrix

Powering The Mountain Since 1929

Fire Safety Matrix

- Designed to prioritize risk mitigations at the circuit level and account for changing conditions.
- Works in conjunction with Risk Safety Model Approach for Small and Multijurisdictional Utilities (SMJUs).



Fire Safety Matrix Inputs

- Utilizes an algorithm with over 20 data inputs to assess risk of circuits based on risk factors and status of mitigation measures.
 - $_{\odot}$ Localized vegetation density along circuit quantified from LiDAR surveys.
 - $_{\odot}$ Localized weather based on historical data used to develop wind intensity factors

for each circuit.

Powering The Mountain Since 1929

Slide 9

Advanced Ignition Probability and Risk Modeling

Slide 10

Advanced Ignition Probability and Risk Modeling

- Expert consultant developing risk models tailored to BVES electrical system to provide the following:
 - Ignition probability mapping showing the probability of ignition along overhead electric lines and equipment.
 - Match drop simulations showing the potential wildfire consequence of ignitions that occur along electric lines and equipment under current (2021) conditions and under future (2050) conditions.
 - Summarized risk maps showing overall ignition probability and estimated wildfire consequence/risk under current and future conditions.
 - $_{\odot}$ Initiative mapping and estimation of wildfire and PSPS risk-reduction impact.
 - GIS data and supporting documentation will be provided. Weather, fuels, and fire model output data are generated in raster (i.e., GeoTiff) format and will be provided to BVES.
- Project is expected to be completed by December 2021 (ahead of schedule).

Risk Modeling Methodology 2021 Q3 Update

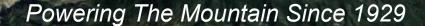
- Ignition rate (ignitions / line mi / hr..) quantified using publicly-available ignition and overhead facilities data on file with CPUC
 - Weather conditions at ignition location & time of ignition determined from RTMA and normalized by historical values that the entire overhead network "sees"
 - Ignition rate is an exponential function of wind gust speed, fine dead fuel moisture content, and fuel temperature
- 10-year climatologies (2021 and 2050) use to drive ignition & spread simulations
- 1,000,000 years of fires are simulated for current and climate-adjusted conditions. Simulation duration varied from 24 hours to 1 week.

Risk Modeling Inputs

2021 Q3 Update

- Fuel: 2021 CA fuel scape (Pyrologix / USFS R5) 30 m resolution
- Structures: Microsoft US building footprints, 2021 refresh
- Weather / climate
 - OCurrent (2021) conditions: Real Time Mesoscale Analysis (RTMA); hourly, 2.5 km resolution, years 2011 – current
 - Climate adjusted (mid-century) conditions: Dynamically downscaled WRF initialized with global climate models from 6th Coupled Model Intercomparison Project (CMIP6); hourly, 3.0 km resolution, years 2046 – 2055

Overhead Infrastructure



Overhead Infrastructure Density

Modeled Fire Area (48-hr, Unsuppressed)

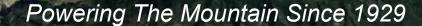
- <u>Fire area (acres)</u>
- 0 0.9
- 0.9 2.9
- 2.9 8.5
- 8.5 87.2
- 87.2 809.85
- 809.85 1841
- 1841 2921.2
- 2921.2 4100.3
- 4100.3 5666.67
- 5666.67 106716.4

Risk from Powerline Ignitions (based on fire area)

Higher

Lower

Powering The Mountain Since 1929



Modeled Structure Impacts (48 hr., unsuppressed)

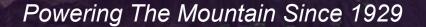
Impacted structures

- 0 1
- 1 4.6
- 4.6 12.9
- 12.9 35.2
- 35.2 74.6
- 74.6 120.4
- 120.4 166.1
- 166.1 218.3
- 218.3 363.8
- 363.8 1298.2

Risk from Powerline Ignitions (structures)

Higher

Lower


Powering The Mountain Since 1929

Annualized Burn Probability from Powerline Ignitions

Annual burn probability (%)
Band 1 (Gray)

Slide 21

Questions?

Our Values

In pursuing our mission, the board of directors, management and the company's employees are guided by the shared Values presented below:

Integrity - Building trust through honest communications and doing what is right
 Teamwork - Maximizing efficiency through collaboration and individual strengths
 Respect - Valuing diversity and treating all stakeholders with fairness
 Excellence in Service - Striving for excellence and quality in everything we do
 Accountability - Taking ownership of one's actions

