

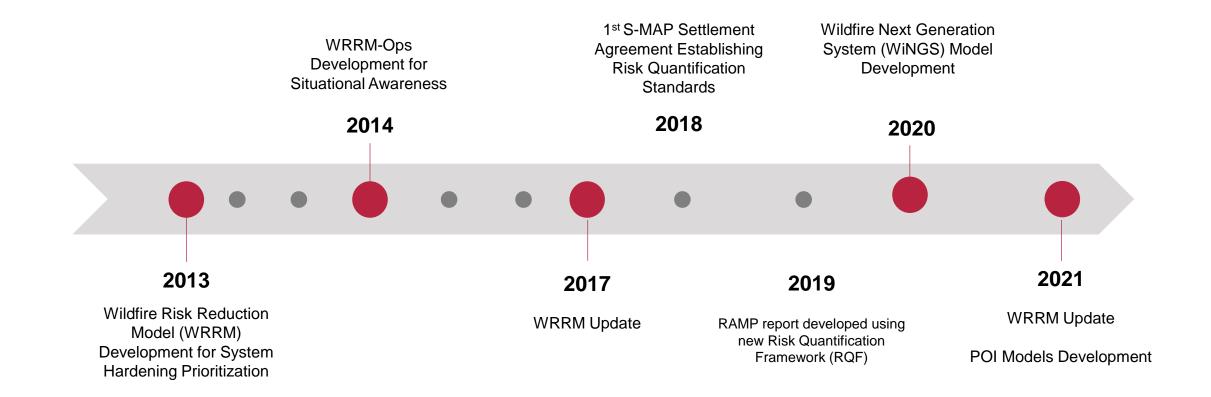
& WILDFIRE SAFETY

OEIS Risk Modeling Workshop

October 5 - 6, 2021

Agenda

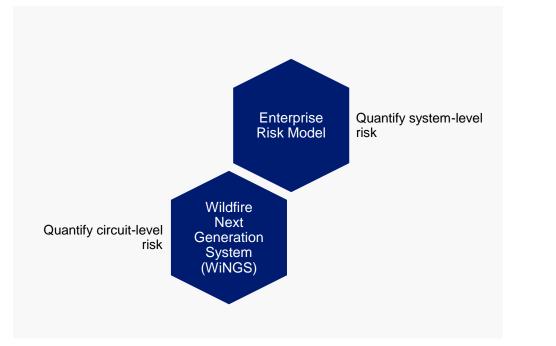
- 1. Overview of current models
- 2. Model deep-dives
- 3. 2022 WMP update
- 4. Joint IOU efforts

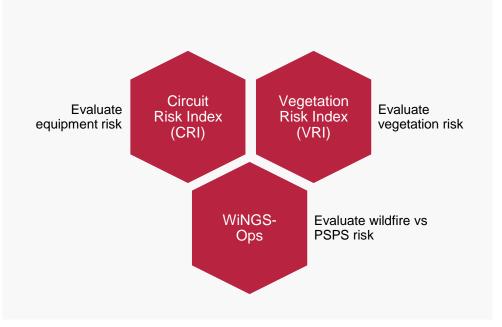


Wildfire Risk Modeling Evolution

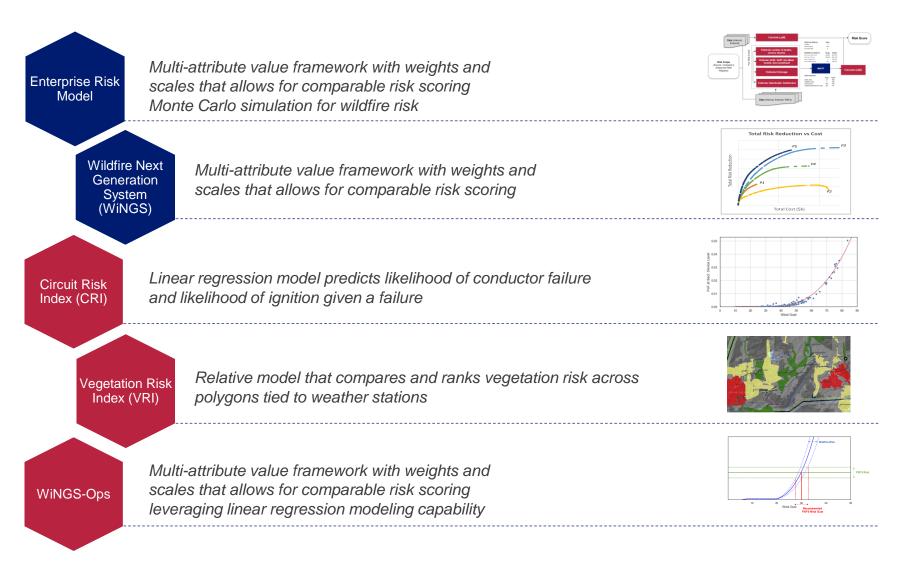
SDG&E continues to evolve its risk modeling capabilities to adapt to emerging challenges

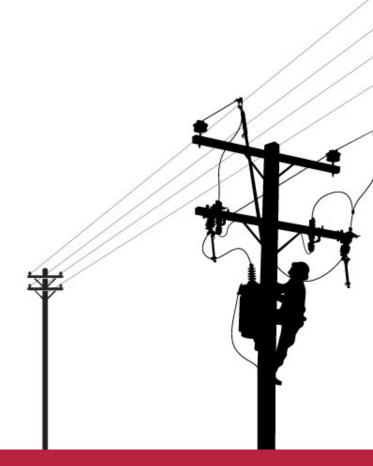
Current Risk Models



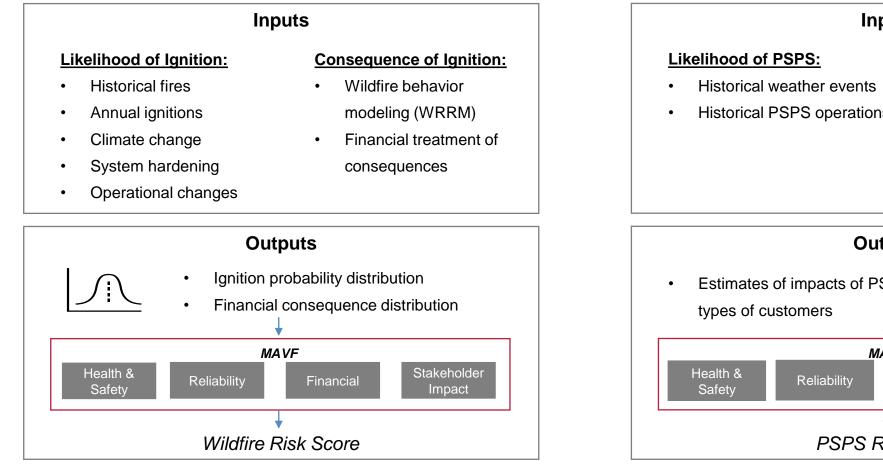

Investment Planning Models

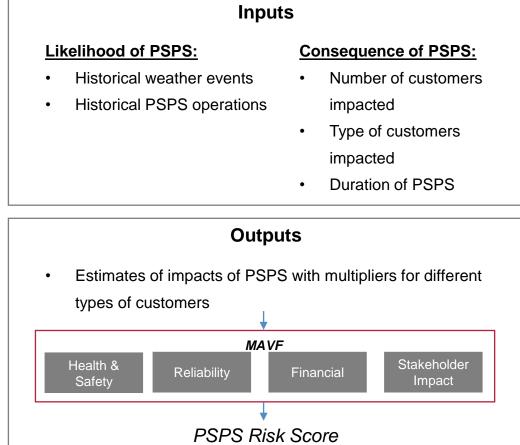
Quantify risk levels and develop cost-benefit analysis of projects and programs to inform investment decisions


Provide situational awareness to support safe operations of our electric system



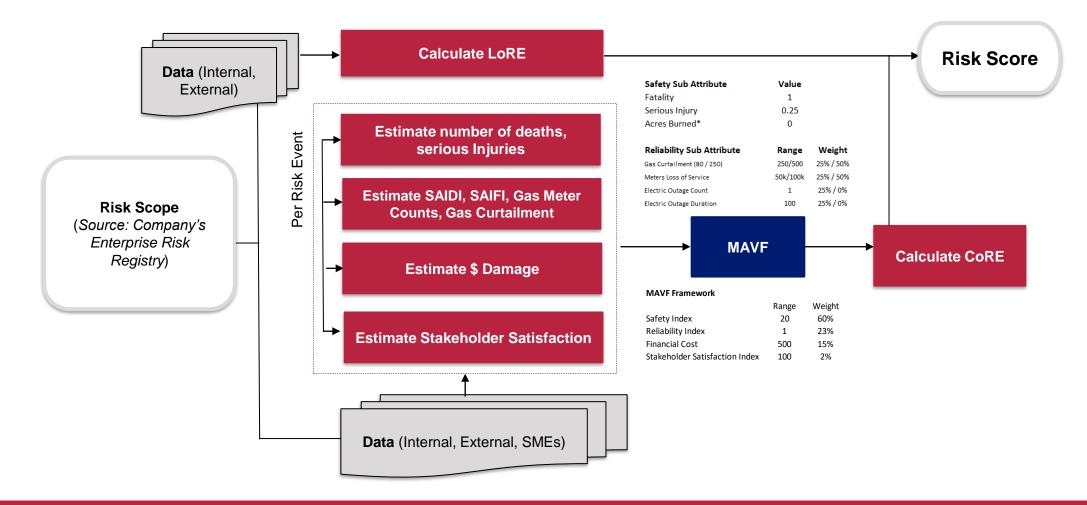
Current Risk Models





Wildfire Risk

PSPS Risk



Risk Quantification Framework

Risk Score = Likelihood of Risk Event (LoRE) x Consequence of Risk Event (CoRE)

Current Application:

- Enterprise risk reporting
- System-wide risk evaluation
- RAMP assessments
- GRC assessments
- Development of RSEs for WMP initiatives

Enterprise Risk Assessments

Line No.	2021 RAMP Risk	LoRE	CoRE	Risk Score
1	Wildfires Involving SDG&E Equipment (WF/PSPS)	22/4	579/1,366	18,085 (12,623/5,462)
2	Electric Infrastructure Integrity	1,500	4	6,423
3	High Pressure Gas Incident (Excluding Dig-in)	0.88	2,117	1,866
4	Incident Involving a Contractor	1.67	1,061	1,768
5	Contact with Electric Equipment	1.09	1,375	1,500

Risk Spend Efficiency

Mitigation: Hot Line Clamp Replacement							
Annual Reduction of Likelihood of Risk Event	.008						
Cost	\$2M						
Life of Benefits	25 years						

	Pre-Mitigation	Post-Mitigation						
LoRE	21.8	21.792						
CoRE	((0.067 / 20) * 60% + (0.002) * 20% + (10.56 / 500) * 15% + (0.5 / 100) * 5%) * 100000 = 579	((0.067 / 20) * 60% + (0.002) * 20% + (10.56 / 500) * 15% + (0.5 / 100) * 5%) * 100000 = 579						
Risk Score	LORE * CORE = 21.8 * 579= 12,623	New LORE * CORE = 21.792 * 579= 12,618						
RSE	-	(12623 - 12618) * 25 / \$2M= 58						

Wildfire Next Generation System

(WiNGS)

Inputs

Likelihood

- Historic ignitions
- Wind speed
- Tree strikes

•

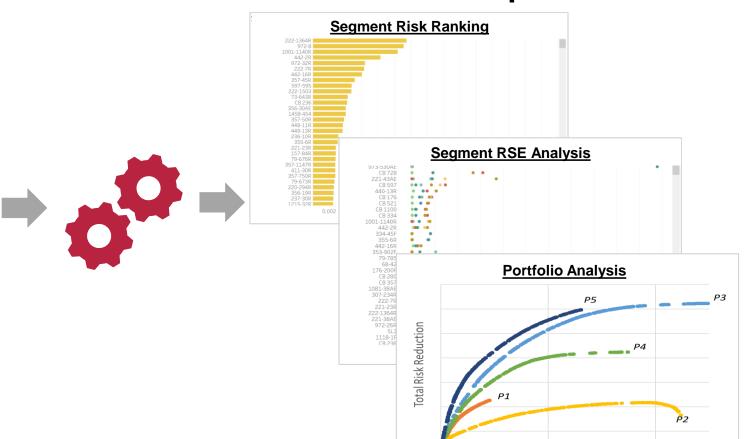
Wildfire

PSPS

- Hardening status
- Vegetation density
- Critical Health Index (CHI)
- Conductor age

<u>Likelihood</u>

- Annual RFW data
- Historic wind speed patterns
- Circuit connectivity

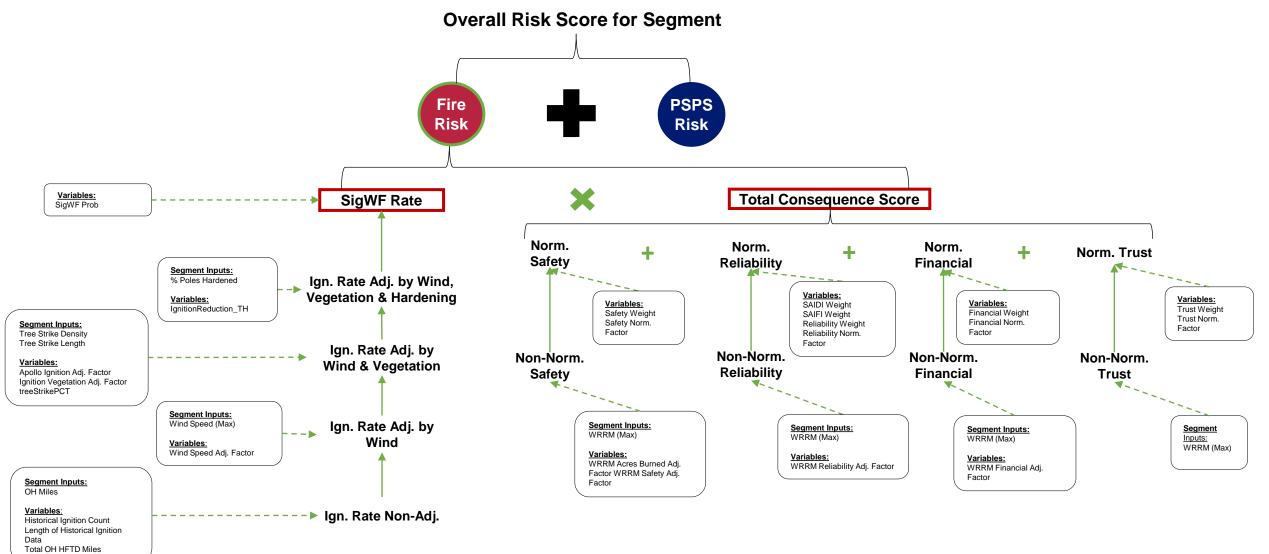

Consequence

WRRM conditional

impact

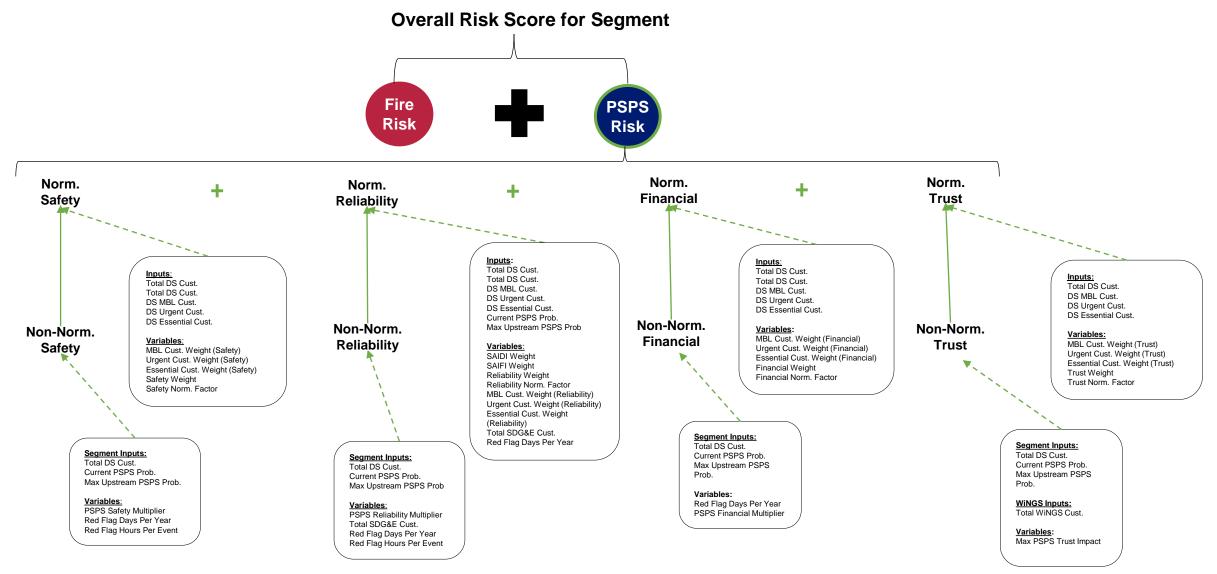
Consequence

- Number of customers
- Customer type
- Outage duration

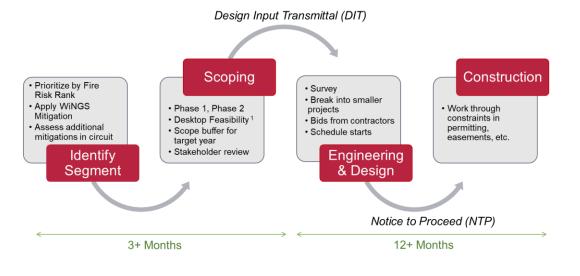


Outputs

Total Cost (\$k)

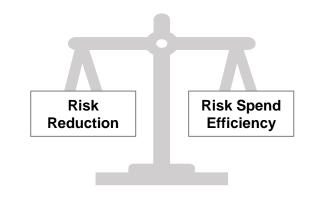

WiNGS - Fire Risk Methodology

WiNGS - PSPS Risk Methodology

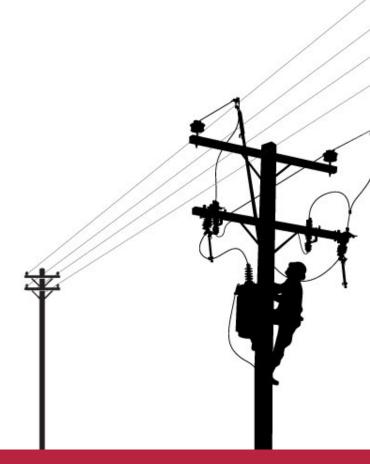


WiNGS

Current Application:


- Circuit and sub-circuit (segment) risk evaluation
- Grid hardening alternatives analysis
- Identification of scope for undergrounding and for covered conductor

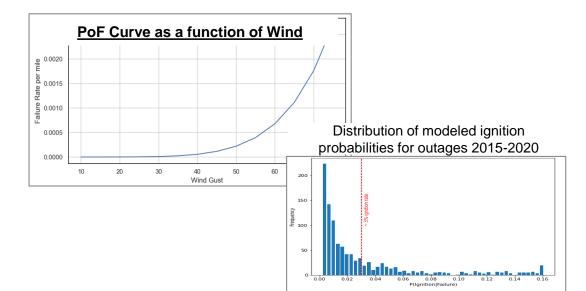
1. Considerations in Desktop Feasibility Study: Geography, prior hardening, loading district, standards, land, environmental, easement constraints, PSPS Improvements, line/reliability improvements, construction cost savings


Balancing Risk Reduction and Costs

Illu	strativ	/e		Unde	rgroun	d	Covered Conductor				
Seg	WF Risk	PSPS Risk	Total Risk	Risk Reduction	Cost	RSE	Risk Reduction	Cost	RSE		
1	15	5	20	18	\$15M	55	10	\$7M	85		
2	23	15	38	30	\$30M	45	15	\$12M	60		
n	10	8	18	16	\$10M	60	5	\$5M	35		

Circuit Risk Index

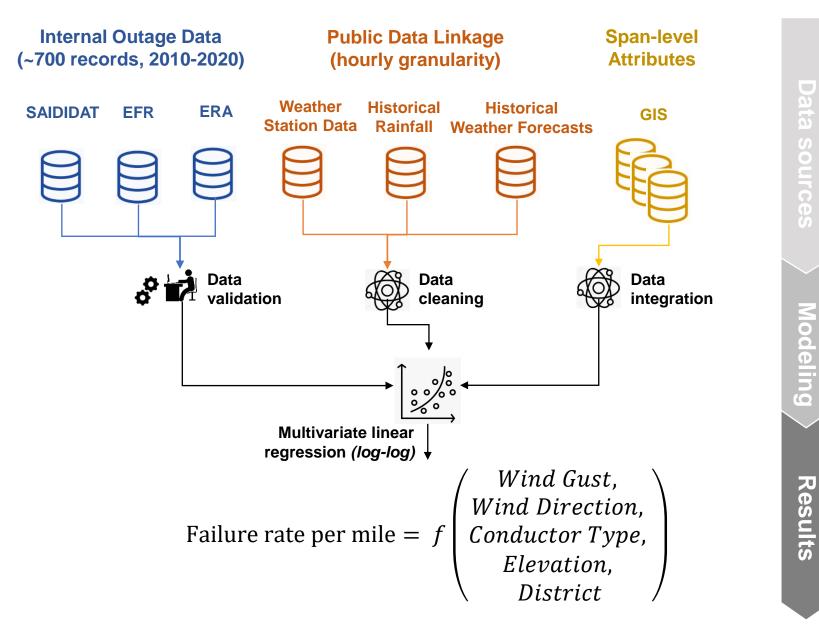
Circuit Risk Index


This model quantifies the conductor risk based on type, size of conductors, location as well as other factors for a segment as a function of wind gusts

Probability of Failure

Inputs

Probability of Ignition


Outputs

Time-dependent likelihood Conductor Risk is H, M, L Wire Type and # of Spans

٠

Probability Of Failure Modeling

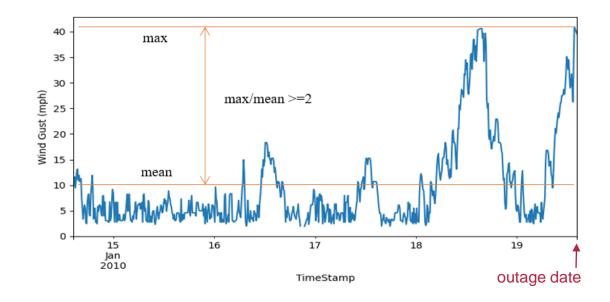
What it is included:

- Wire downs caused by extreme weather
- Wires that slap together due to wind gusts
- Wire that comes out of sleeve during high winds

What it is not included:

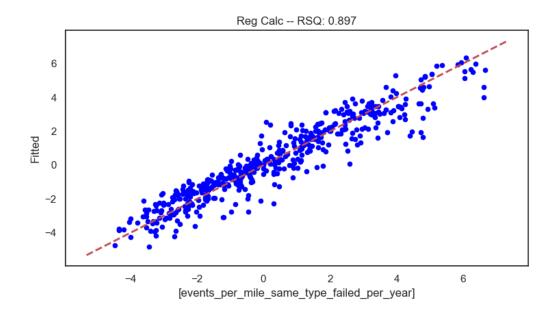
- Vegetation, customer, crew, or foreign object contacts
- Lightning Arrester -Transformer failure
- De-energization for safety
- Ice or snow equipment failure

Key Assumptions


For every outage, failure rate per mile is calculated based on:

- 1. Total number of miles for same conductor type, size and material
- 2. Total number of miles in similar elevation and span length
- 3. Total number of miles that experienced similar weather conditions (buffer of 10 miles around the outage location)
- 4. Total number of miles perpendicular to most common wind direction in 5-day weather window
- 5. Outage weather condition must meet Wind Gust Step function rule in 5-day weather window

Wind Gust Step Function

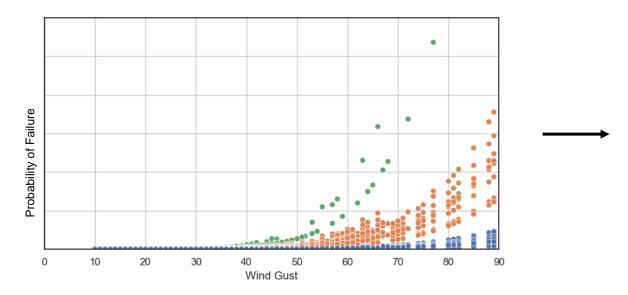

 Removed observations where a step function in wind gust (max/mean >=2) is not present in 5-day weather window

Probability of Failure Model

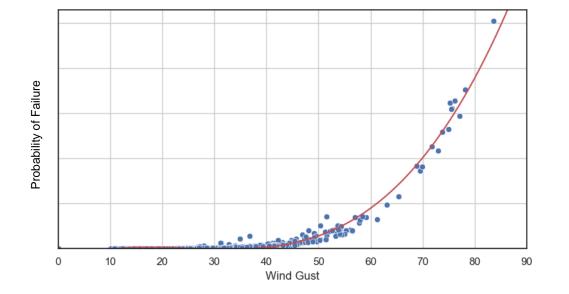
Failure rate per mile $\approx \oint$ (Wind Gust, Wind Direction, Cond. Type, Elevation, District)

	OLS Regression Result	S	
Dep. Variable:	events_per_mile_same_type_failed_per_year	R-squared:	0.897
Model:	OLS	Adj. R-squared:	0.892
Method:	Least Squares	F-statistic:	161.9
Date:	Tue, 27 Jul 2021	<pre>Prob (F-statistic):</pre>	6.07e-211
Time:	13:33:59	Log-Likelihood:	-581.97
No. Observations:	489	AIC:	1216.
Df Residuals:	463	BIC:	1325.
Df Model:	25		
Covariance Type:	nonrobust		

Confidence level is set to 95%


Model Insights

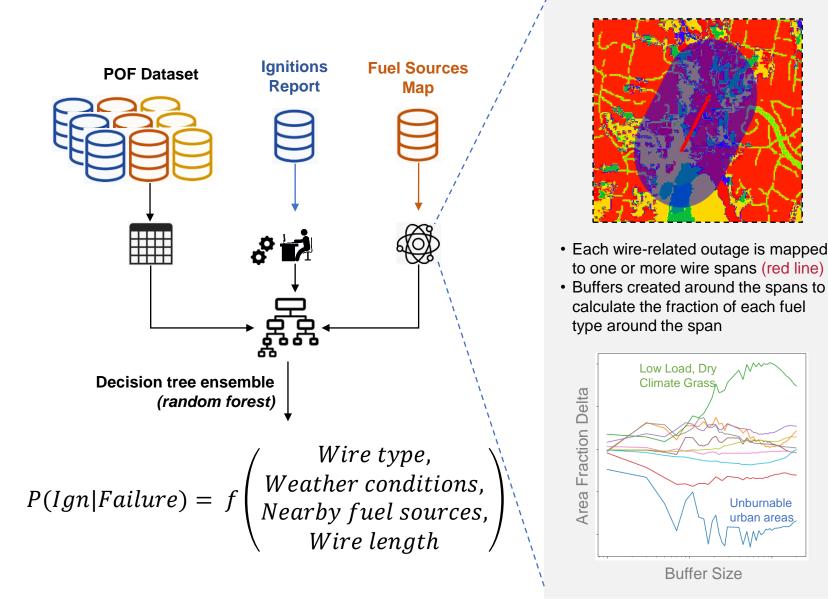
- Cu#6 wire is 1.5x more prone to failure than AL 5/2 AWAC #2
- For Cu#4 and Cu#6 wires, probability of failure increases by a factor of ~900, when wind gust increases from 20mph to 60mph

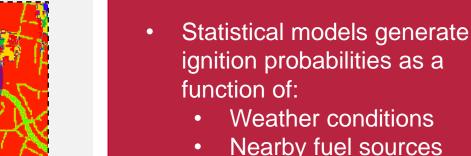

Dynamic Probability of Failure

Failure rate per mile $\approx \oint$ (Wind Gust, Wind Direction, Cond. Type, Elevation, District)

PoF at Span Level

- Probability of conductor failure curve for each span in segment
- Color dot indicate different conductor types



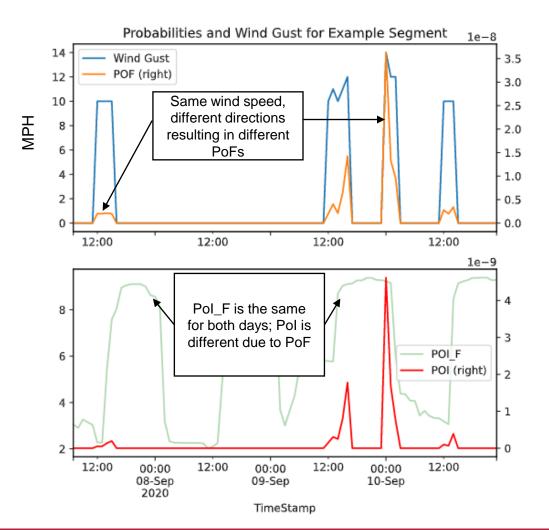

PoF at Sectionalizing Device

- Probability of conductor failure curve for a segment
- Aggregation is possible by assuming a constant Pol and Consequence value.
- Red line represent best fitted line (x^3 polynomial)

Conditional Probability of Ignition

Unburnable

urban areas


Buffer Size

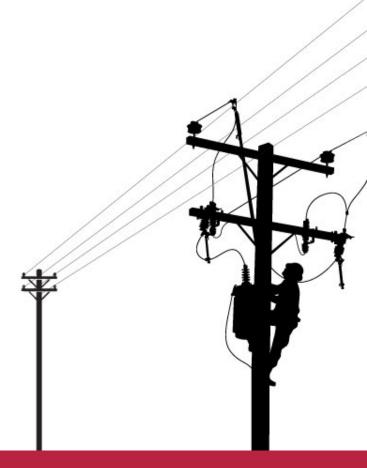
- Weather conditions
- Nearby fuel sources
- Wire type
- Data shows that we can • detect fuel sources more prevalently under spans that have caused ignitions
- The net result is distribution of span-level ignition probabilities, which is more *targeted* than taking a fixed rate.

Dynamic Modeling Capability

Pol = PoF × **Pol_F**

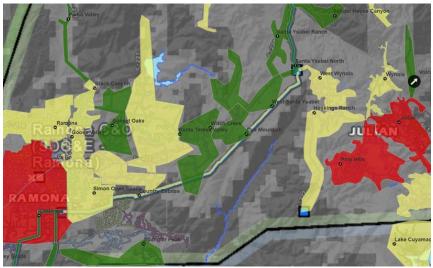
- Models are granular enough to enable differentiation in risk
- **POF** is mostly dependent on **wind** conditions
 - POI primarily takes the shape and behavior of this model
- POI_F is strongly dependent on time of day due to weather conditions

Circuit Risk Index


Current Application:

- Situational awareness during severe weather events
- Alert speed setting for PSPS operations
- Identification of segments with high conductor risk

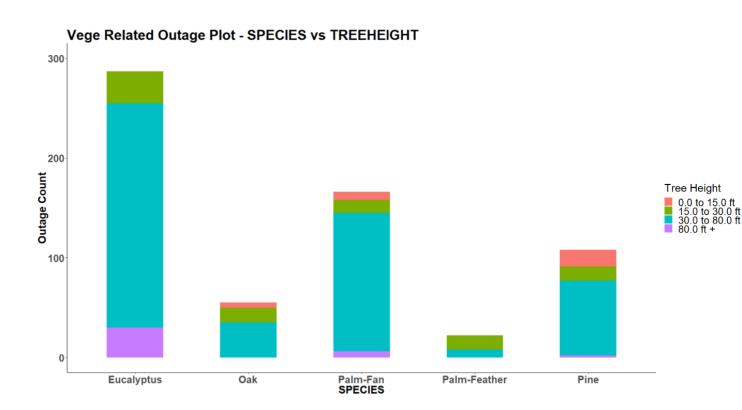
SDGE PSPS Dashboard							DeEnergized Areas 🦳 Critical Facility Details 🔌 30 Seco						ond Read 🛛 🖉 PSPS Guide 🛛 🜐 EOC Web Resour			
Anemometer	Notification to DeEnergize	Device	Gust	Alert Speed	Gust - Alert Speed	95/99 Per	VRI	CRI	Forecast	FPI	District	Sub	Projected Meters	MBL Count	Communit	
Cameron Corners		448-9R*	21	35	-14	29/35	М	М	26	14	ME	CN	1012	99	Campo	
Cameron Corners		449-6R*	21	35	-14	29/35	Μ	М	26	14	ME	CN	621	56	Campo	
<u>/olcan Mountain</u>		221-19R	30	45	-15	40/50	L	М	34	14	RA	ST	0	-	Julian	
<u>Ranchita</u>		211-279R*	19	35	-16	25/32	М	Н	20	14	RA	WR	289	23	Ranchita	
Guatay		79-676R*	20	36	-16	27/36	М	Н	19	14	ME	DE	691	43	Descanso	
Boulevard West		445-39R*	24	41	-17	34/41	М	Н	27	14	ME	BUE	955	78	Boulevard	
Eucalyptus Hills		SN-12KV-	16	35	-19	29/32	Н	н	14	14	EA	SN	893	109	Lakeside	
Eucalyptus Hills		LCS-12KV-248	16	35	-19	29/32	Н	М	14	14	EA	LCS	1	0	Lakeside	
Eucalyptus Hills		396-699R*	16	35	-19	29/32	Н	М	14	14	EA	SN	603	94	Lakeside	
Pauma Valley		217-835R*	16	35	-19	24/31	М	Н	22	14	NE	RIN	170	6	Pala	
^p auma Valley		PA-12KV-249*	16	35	-19	24/31	М	Н	22	14	NE	PA	552	24	Pala	
Harrison Park		222-7R*	26	45	-19	36/48	М	Н	29	14	RA	ST	465	23	Julian	
Harmony Grove		182-2240F	15	35	-20	25/35	М	Н	23	14	NE	ES	2821	185	Escondido	
Marion Canyon		217-835R*	15	35	-20	31/33	М	Н	11	14	NE	RIN	170	6	Pala	
<u>Creelman</u>		CRE-12KV-971*	14	35	-21	30/36	Н	Н	23	14	RA	CRE	1094	-	Ramona	
Creelman		974-35R*	14	35	-21	30/36	Н	L	23	14	RA	CRE	343	17	Lakeside	
Alert Wind Speed Last Updated Time >= Alert Speed Alert Speed -7 MPH Ø 08/27/2021 16:32							Next Update 29 seconds				Temporary Configura	ion and/or <u>Com</u>	pliance Poles = *			


30

Inputs

- Distribution circuit segments and transmission lines within the Hight Fire Threat District
- Vegetation Management's
 Tree Database
 - $_{\circ}$ Location
 - o Height
 - $_{\circ}$ Species
- Tree-related outages since 2000

Vegetation Risk: H / M / L

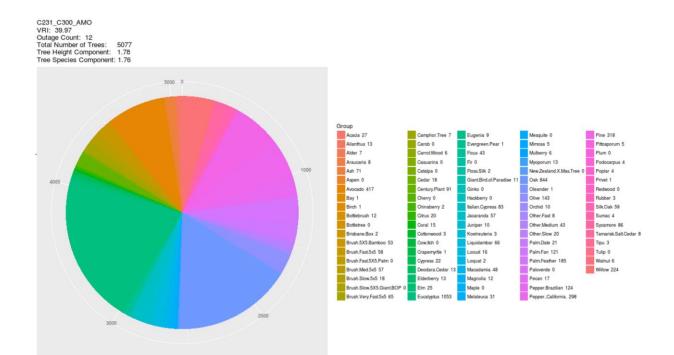


data solutions llc

Vegetation Risk Index

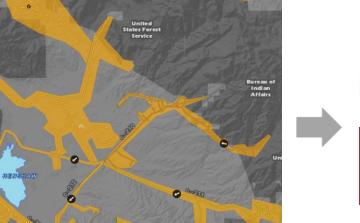
- Most veg-related outages occurred during high wind events, especially in winter and spring
- Strong relationship between upper-level soil moisture, recent rainfall and outages
- Tree species vs veg-related outages
 - Eucalyptus (34.6%)
 - Palm-Fan (23.7%)
 - Pine (11.9%)
 - Palm-Feather (2.5%)
 - Oak (6.0%)
- Tree height vs veg-related outages
 - 0-15 ft (7.0%)
 - 15-30 ft (12.3%)
 - 30-80 ft (52.4%)
 - Above 80 ft (3.6%)
 - No record (24.7%)

VRI Algorithm


VRI = T + 2(Oh)

$T = Tt \times (Th \times Ts) \times 10^{-3}$

- *Tt* = Total number of inventory trees along the circuit segment
- Th = Tree height component = $1(H_1) + 2(H_2) + 3(H_3)$
 - (H_1) = Percentage of inventory trees with height < 20ft
 - (H_2) = Percentage of inventory trees with height 20 40ft
 - (H_3) = Percentage of inventory trees with height > 40ft


 $Ts = Tree \ species \ component = 1(S_1) + 2(S_2) + 3(S_3) + 4(S_4)$

- (S_1) = Percentage of low-risk trees (Species outage percent < 0.12%) (S_2) = Percentage of medium risk trees (Species outage percent 0.12% - 0.47%) (S_3) = Percentage of high-risk trees (Species outage percent 0.47% - 2.29%)
- $(S_4) = Percentage of extreme risk trees (Species outage percent > 2.29%)$

Oh = Outage History Component: Total number of tree-related outages (excluding tree trimming) along a circuit segment since 2000

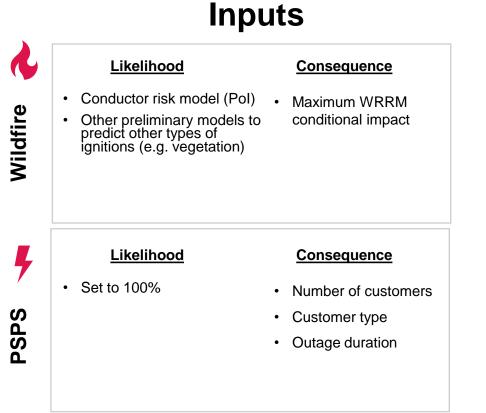
Meteorology SMEs

SDG&E Vegetation Management & Meteorology

Current Application:

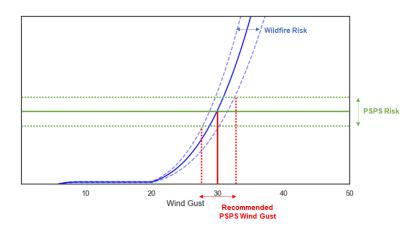
- Situational awareness during severe weather events
- Alert speed setting for PSPS operations
- Identification of segments with high vegetation risk

SDGE PSPS Dashboard						Areas	'📜 Critical Facility Details 🛛 🏾 🖄 30 Seco					Read 🛛 🖪 PSPS Gu	ide 🌐 EO	OC Web Resource
Anemometer	Notification to Device DeEnergize	Gust	Alert Speed	Gust - Alert Speed	95/99 Per	VRI	CRI	Forecast	FPI	District	Sub	Projected Meters	MBL Count	Communit
Cameron Corners	448-9R*	21	35	-14	29/35	М	М	26	14	ME	CN	1012	99	Campo
Cameron Corners	449-6R*	21	35	-14	29/35	М	М	26	14	ME	CN	621	56	Campo
/olcan Mountain	221-19R	30	45	-15	40/50	L	М	34	14	RA	ST	0		Julian
<u>lanchita</u>	211-279R*	19	35	-16	25/32	М	Н	20	14	RA	WR	289	23	Ranchita
Guatay	79-676R*	20	36	-16	27/36	М	Н	19	14	ME	DE	691	43	Descanso
Boulevard West	445-39R*	24	41	-17	34/41	М	Н	27	14	ME	BUE	955	78	Boulevard
ucalyptus Hills	SN-12KV-	16	35	-19	29/32	Н	н	14	14	EA	SN	893	109	Lakeside
ucalyptus Hills	LCS-12KV-248	16	35	-19	29/32	Н	М	14	14	EA	LCS	1	0	Lakeside
ucalyptus Hills	396-699R*	16	35	-19	29/32	Н	М	14	14	EA	SN	603	94	Lakeside
auma Valley	217-835R*	16	35	-19	24/31	М	Н	22	14	NE	RIN	170	6	Pala
auma Valley	PA-12KV-249*	16	35	-19	24/31	М	Н	22	14	NE	PA	552	24	Pala
larrison Park	222-7R*	26	45	-19	36/48	М	Н	29	14	RA	ST	465	23	Julian
larmony Grove	182-2240F	15	35	-20	25/35	М	Н	23	14	NE	ES	2821	185	Escondido
Marion Canyon	217-835R*	15	35	-20	31/33	М	Н	11	14	NE	RIN	170	6	Pala
Creelman	CRE-12KV-971	* 14	35	-21	30/36	Н	Н	23	14	RA	CRE	1094		Ramona
Creelman	974-35R*	14	35	-21	30/36	Н	L	23	14	RA	CRE	343	17	Lakeside
Alert Wind Speed Last Updated Time					Next Update In 29 seconds									



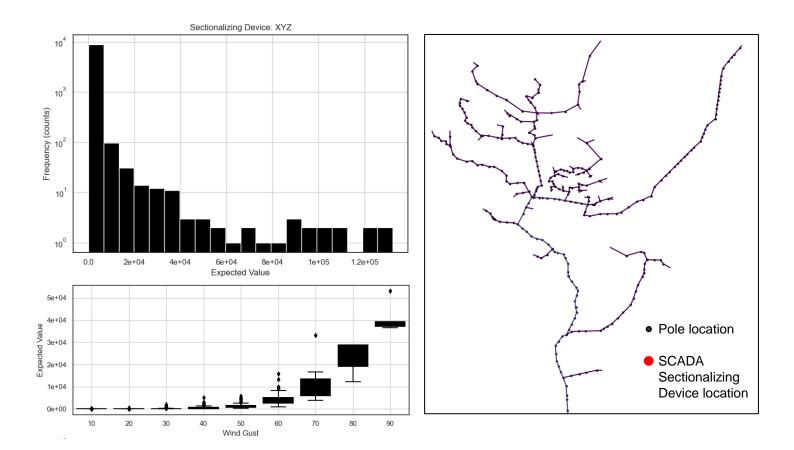
WiNGS-Ops

WiNGS - OPS


This model quantifies wildfire and PSPS risk and provides a range of wind gusts where fire risk is likely greater than the PSPS risk.

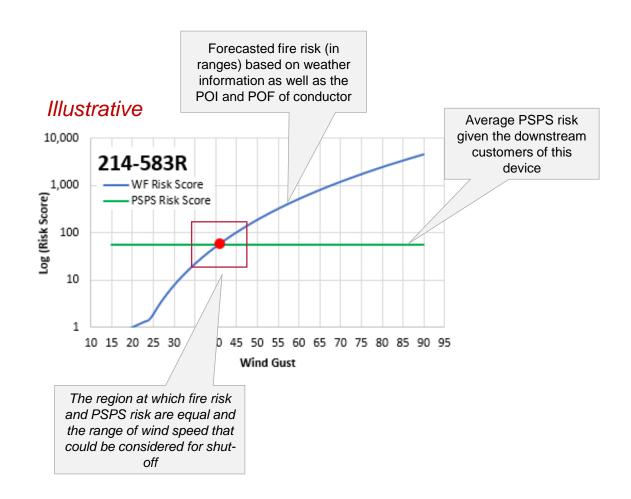
Outputs

- Comparison of wildfire and PSPS
 risks
- Estimated range of windspeeds at which the two risks intersect



Range of Segment Wildfire Risk

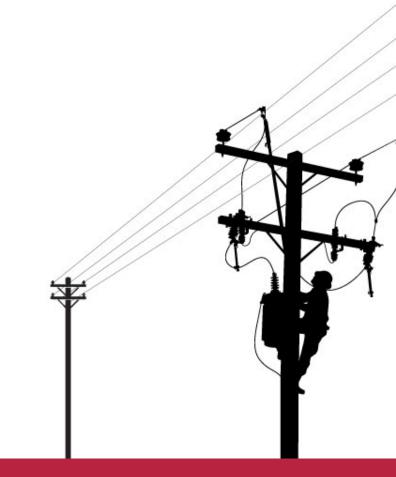
- POI, POF and Consequence are calculated at the span-level
- Therefore, for any given segment, there is a distribution of values, from which we may take the mean, max, min, or any value between
- Additionally, for forecasting, we may also consider historical values



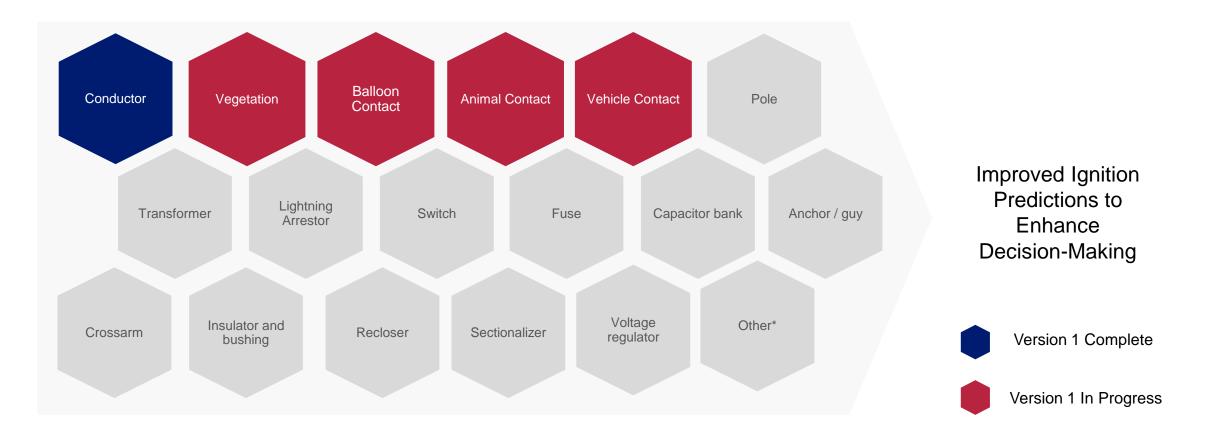
33

WiNGS - OPS

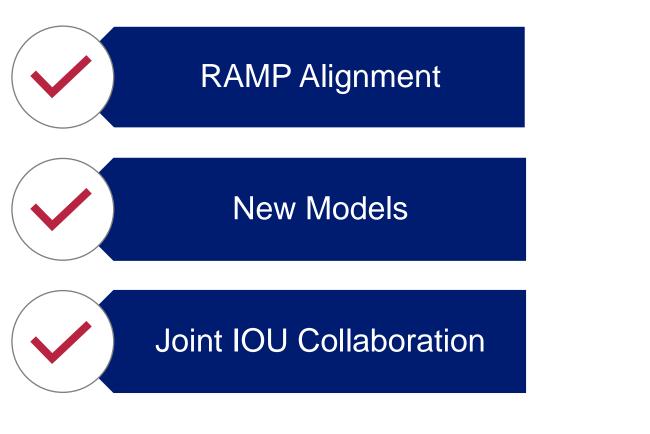
Current Application:

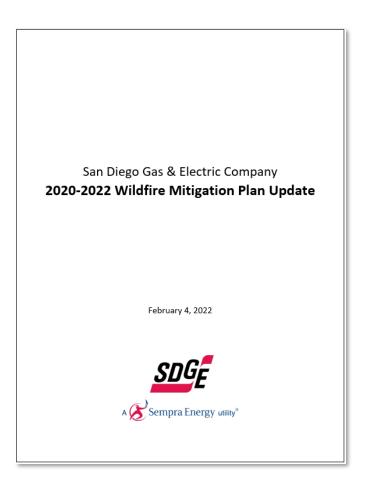

- Pre-event analysis for areas at potential risk of de-energization
- Information provided during situational awareness updates
- Post-event reporting to demonstrate benefit of de-energization compared to PSPS risks

Close-Out


Risk Modeling Summary

Subsequent Models




Focusing risk modeling efforts on the development of more granular Probability of Ignition (PoI) models for different assets and failure modes

2022 WMP Updates

Joint IOU Efforts

- ✓ Since the 2019 WMP process, SCE, PG&E and SDG&E have conducted wildfire-related benchmarking sessions on various topics, including risk modeling, mitigation effectiveness, vegetation management activities, and PSPS operations.
- ✓ PG&E, SCE and SDG&E collaborated on at least 10 occasions in 2021 on risk assessment and modeling alignment opportunities.
- ✓ IOUs have evaluated elements of risk modeling where near-term alignment could be achieved.
- ✓ Currently developing a common vision (end-state) for long-term alignment on risk modeling, while recognizing differences.