

Diane Conklin
Spokesperson
Mussey Grade Road Alliance
PO Box 683
Ramona, CA 92065

December 29, 2025

VIA ELECTRONIC FILING

Tony Marino, Deputy Director
Office of Energy Infrastructure Safety
715 P Street, 20th Floor
Sacramento, CA 95814

**RE: MUSSEY GRADE ROAD ALLIANCE REPLY TO STAKEHOLDER COMMENTS ON
THE 2026-2028 SDG&E DRAFT DECISION**

Dear Deputy Director Marino,

The Mussey Grade Road Alliance (MGRA) files these reply comments pursuant to the November 25, 2025 SDG&E Draft Decision¹ which authorizes public comment by December 16, 2025 and reply comments on December 27, 2025.

MGRA's response is limited to specific topics raised by SDG&E in its Opening Comments.

Respectfully submitted this 29th day of December, 2025,

By: /S/ **Diane Conklin**

Diane Conklin
Spokesperson
Mussey Grade Road Alliance
P.O. Box 683
Ramona, CA 92065
(760) 787 – 0794 T
(760) 788 – 5479 F
dj0conklin@earthlink.net

¹Office of Energy Infrastructure Safety's Draft Decision for San Diego Gas & Electric Company's 2026-2028 Base Wildfire Mitigation Plan; November 25, 2025. (DD or Draft Decision)

By: /S/ **Joseph W. Mitchell**

Joseph W. Mitchell, Ph.D.
M-bar Technologies and Consulting, LLC
19412 Kimball Valley Road
Ramona, CA 92065
(858) 228 0089
jwmitchell@mbartek.com

On behalf of the Mussey Grade Road Alliance.

1. INTRODUCTION AND SUMMARY

These comments are provided in response to SDG&E's Opening Comments on Energy Safety's Draft Decision on the SDG&E 2026-208 Base Wildfire Mitigation Plan.² MGRA has provided substantive commentary on these issues during the course of the 2026-2028 WMP review cycle. MGRA in general supports Energy Safety's Draft Decision and urges that only limited clarifying changes be made to it.

2. ISSUES

2.1. Suppression

SDG&E states that it has concerns with the requirements that utilities model suppression: *“SDG&E believes that electric utilities should not be responsible for developing fire suppression models, as they lack the necessary expertise, operational influence, and direct involvement in suppression activities. Instead, the exploration and development of such models should be a collaborative effort led by first responders, academic institutions, and other relevant stakeholders. This approach will help ensure accuracy, credibility, and practical value before any consideration of integrating these models into utility planning or operational frameworks. Incorporating suppression into Technosylva’s 8-hour or 24-hour models would be highly complex due to numerous unpredictable variables such as terrain, resource availability, human decision-making, and weather conditions. Attempting to model fire suppression could therefore lead to inaccurate assumptions, potentially underestimating risk.”*

While SDG&E raises a valid point regarding the complexity of the suppression problem, the level of expertise required for modeling suppression, and the kind of input that would be required to accurately model it, SDG&E should be cognizant that utilities are the primary customer for such a data product because they need to have an accurate assessment of risk in order to request revenue for mitigation and choose the appropriate mitigation. So, while the effort to develop suppression models should be collaborative, it should not be ‘led’ by first responders or academic institutions. It

² Docket 2026-2028 Base WMPs; Comments on Energy Safety's Draft Decision for SDG&E's 2026-2028 Base Wildfire Mitigation Plan; December 16, 2025. (SDG&E Comments)

should be sponsored by the utilities – who will incorporate the product into their analysis models – and guided by OEIS, whose role it is to ensure the safety of electrical utilities.

Whether suppression is incorporated into Technosylva models or not is at some level up to Technosylva and the members of the stakeholder team assembled to work on the problem. As MGRA stated in its Comments on the PG&E 2026-2028 Draft Decision, and as suggested by the MGRA expert during the original RMWG discussion of suppression, the suppression problem is easier to manage if broken into three parts:

- *Initial attack success – the likelihood that a wildfire does not become large or destructive due to initial deployment of resources and favorable local and environmental conditions.*
- *Perimeter control – the ability of firefighting resources to influence spread of the wildfire, causing it to be less than that which would be predicted by an unimpeded wildfire simulation.*
- *Structure protection – the increase in structure survival rate due to the availability of firefighting resources to protect structures in wildland urban interface areas.*

The first and the third parts are tractable with known science and technologies. While initial attack success probability depends on many variables, it is a binary result – success or failure – and as such should be readily accessible to machine learning models. Structure protection also depends on many variables including the layout of communities and neighborhoods, exposure of structures to natural and ornamental vegetation, and emergency service access. Technosylva has already presented a structure loss model that incorporates some of these variables.

Perimeter control is the hardest aspect of suppression modeling. This is a modeling of human actions on the perimeter of a wildfire moving under otherwise natural conditions with non-linear elements, and no realistic model is likely to be developed that describes perimeter control accurately in the near future. While it may not be possible to create a physical model of perimeter control fire suppression with current science and technology, it *might* be possible to create a statistical model with existing wildfire history. A wildfire with successful perimeter control will be smaller than one that is allowed to freely propagate, which leads to the hypothesis that a comparison of wildfire spread simulation results and actual areas burned might show a difference, with the actual fire footprint being less than predicted, partially due to suppression efforts. Because

Technosylva “tunes” its model parameters based on historical wildfires to improve the accuracy of its predictions, this raises the possibility that perimeter control *might already be implicitly included in Technosylva calculations.*

In any case, attacking the suppression problem will require significant investment of stakeholder time and require the full and transparent participation of vendors, academics, and wildfire service agencies. Suppression modeling shouldn’t be left for each utility to develop on its own, as this would be wasteful of resources and dilute the attention of regulators and reviewers. MGRA recommends that OEIS lead the development of acceptable fire suppression model guidelines as a major effort arising from the Risk Mitigation Working Group. (RMWG). MGRA also recommends that this be done jointly with the Safety Policy Division of the CPUC to ensure that models are appropriately incorporated into the utility rate case process. A joint effort with the CPUC would also encourage external stakeholder participation because intervenors may find it easier to be compensated for substantial contributions under the Commission umbrella, a benefit as yet not provided for stakeholder efforts on the RMWG.

3. CONCLUSION

MGRA thanks Energy Safety for the work they do on behalf of residents of high-risk areas and urges them to continue serious efforts to develop accurate suppression models through the Risk Mitigation Working Group and in partnership with other stakeholders.

By: /S/ **Joseph W. Mitchell**

Joseph W. Mitchell, Ph.D.
M-bar Technologies and Consulting, LLC
19412 Kimball Valley Road
Ramona, CA 92065
(858) 228 0089
jwmitchell@mbartek.com

On behalf of the Mussey Grade Road Alliance.