Diane Conklin Spokesperson Mussey Grade Road Alliance PO Box 683 Ramona, CA 92065

August 4, 2025

VIA ELECTRONIC FILING

Tony Marino, Deputy Director Office of Energy Infrastructure Safety 715 P Street, 20th Floor Sacramento, CA 95814

RE: MUSSEY GRADE ROAD ALLIANCE COMMENTS ON THE R1 REVISION OF THE 2026 TO 2028 UPDATE OF THE WILDFIRE MITIGATION PLANS OF SDG&E

Dear Deputy Director Marino,

The Mussey Grade Road Alliance (MGRA) files these comments pursuant to the July 9, 2025 Approval of San Diego Gas & Electric Company's Extension Request to Resubmit its 2026-2028 Base Wildfire Mitigation Plan¹ issued by the Office of Energy Infrastructure Safety (OEIS or Energy Safety) which authorizes public comment for SDG&E's resubmission of its Wildfire Mitigation Plan (WMP) by August 4, 2025.

SDG&E filed its original Wildfire Mitigation Plan on May 2, 2025.² MGRA³ and other parties filed comments on the SDG&E WMP on June 13, 2025. SDG&E filed reply comments on June 20, 2025.⁴ On June 24, 2025, Energy Safety issued a Rejection and Resubmit Order raising critical issues with SDG&E's WMP and additional areas of concern and setting a July 11th deadline

¹ Docket 2026-2028-WMPs; Approval of San Diego Gas & Electric Company's Extension Request to Resubmit its 2026-2028 Base Wildfire Mitigation Plan;

TN16226_20250709T140958_Decision_on_SDGE's_Extension_Request_for_20262028_Base_WMP_Resubmission.pdf (2025 Updated Schedule)

² Docket 2026-2028-BASE-WMPS; SDG&E; Wildfire Mitigation Base Plan; version R0; May 2, 2025. (SDG&E WMP).

³ Docket 2026-2028-BASE-WMPS; MUSSEY GRADE ROAD ALLIANCE COMMENTS ON THE 2026 TO 2028 UPDATE OF THE WILDFIRE MITIGATION PLANS OF SDG&E;

TN16032_20250613T111920_MGRA_Comments_on_SDGE_20262028_WMP.pdf; June 13, 2025. (MGRA Comments)

⁴ Docket 2026-2028-BASE-WMPS; Reply Comments of San Diego Gas & Electric Company on its 2026-2028 Wildfire Mitigation Plan;

 $TN16111_20250620T164819_SDGE_Reply_Comments_on_20262028_WMP.pdf; June~20,~2025.~(SDG\&E~Reply)$

for resubmission.⁵ SDG&E requested a deadline extension, which was granted by Energy Safety.⁶ SDG&E filed its revised WMP and supporting documents on July 18th, 2025.⁷

MGRA provides comments on this filing and its compliance with Energy Safety guidance herein. These comments conclude that SDG&E's 2026-2028 WMP R1 should be rejected by Energy Safety on the grounds that SDG&E is not making a significant effort to mitigate the highest risk circuits in its service area, and that SDG&E appears to be systematically applying parameters and inappropriate choices in its calculations in support of its undergrounding program. Support for this conclusion is provided in these MGRA comments, to which we respectfully request Energy Safety give serious consideration.

Respectfully submitted this 4th day of August, 2025,

By: /S/ Diane Conklin

Diane Conklin Spokesperson Mussey Grade Road Alliance P.O. Box 683 Ramona, CA 92065 (760) 787 - 0794 T(760) 788 - 5479 Fdj0conklin@earthlink.net

By: /S/ Joseph W. Mitchell

Joseph W. Mitchell, Ph.D. M-bar Technologies and Consulting, LLC 19412 Kimball Valley Road Ramona, CA 92065 (858) 228 0089 jwmitchell@mbartek.com

On behalf of the Mussey Grade Road Alliance.

⁵ Docket 2026-2028-BASE-WMPS; Rejection and Resubmit Order for the San Diego Gas & Electric Company 2026-2028 Base Wildfire Mitigation Plan; June 24, 2025. (OEIS Rejection)

⁶ Footnote 1.

⁷ Docket 2026-2028-BASE-WMPS; SDG&E; Wildfire Mitigation Base Plan; version R1; July 18, 2025. (SDG&E WMP)

TABLE OF CONTENTS

1. Introduction and Summary	4
2. Non-Conforming Elements	
2.2. Top Risk Circuits	
2.3. System Wide Risk Reduction	
2.3.1. Table 8-1	
2.3.2. Appendix G – Selection of Mitigation	6
2.3.3. Effect of Risk-Averse Scaling and Circuit Selection on Risk Reduction	
2.3.4. Discussion: Risk Mitigation Deferral (Additional Concern #2)	
3. Additional Concerns	
3.1. a. Lifecycle Costs	
3.1.1. Outage/PEDS/PSPS-related mitigation programs	
3.1.2. General Wildfire Mitigation	
3.2. Effectiveness of Covered Conductor (Additional Concern 1.b.)	
3.2.1. "Evidence of Heat" as a Risk Proxy	
3.2.2. Use of FCP efficacy is not correct	
4. SDG&E's Additional Revisions	
4.7. Risk Aversion (Section 5.2.2.3)	20
5. Conclusion	
5.1. SDG&E Appears to be Choosing Parameters and Data that Favor Undergrounding	22
5.2. SDG&E's 2026-2028 WMP R1 Should Be Rejected	
APPENDIX A - MGRA Data Requests	

1. INTRODUCTION AND SUMMARY

These comments are provided in response to the modifications made by SDG&E to its Wildfire Mitigation Plan in response to Energy Safety's Rejection and Resubmit Notice. They are generally ordered in the same fashion as the Non-Conforming Elements and Additional Concerns sections of Energy Safety's Document, as well as addressing additional changes made by SDG&E.

With regard to the MGRA comments on the original SDG&E WMP filing, all continue to remain applicable to SDG&E's revised WMP with any exceptions noted in these comments.

MGRA additionally includes SDG&E data request responses as Appendix A of these comments.

MGRA Workpapers can be found at:

https://github.com/jwmitchell/Workpapers/

Tools used in the preparation of workpapers and analysis include Microsoft Excel, Python 3.8.10 and additional open source modules, ESRI ArcMap 8, and OpenAI ChatGPT 4.0. All methodology suggested and code generated by AI was independently verified and customized.

2. NON-CONFORMING ELEMENTS

2.2. Top Risk Circuits

SDG&E's revisions of Tables 5-5 and 6-4 show its riskiest circuits on a risk-per mile basis. Of the top 10 ranked circuit segments, only one of these, 358-682F, is slated for hardening. It is proposed for Strategic Underground (SUG) mitigation in 2028. The rest of the high risk circuits are treated only with "conventional" mitigation measures. This is surprising given the extensive hardening program proposed in Appendix G and Table 8-1. Energy Safety's requirement that SDG&E address risk on a system-wide level has uncovered further anomalies in SDG&E's mitigation and risk reduction planning. Results suggest that deferral of risk reduction may be occurring in order to facilitate adoption of future undergrounding plans.

2.3. System Wide Risk Reduction

2.3.1. Table 8-1

Energy Safety's requirement that SDG&E provide Table 8-1 in terms of system wide risk (NCE 3) potentially exposes a major issue with SDG&E's Wildfire Mitigation Plan and at the least uncovers major questions regarding SDG&E's risk analysis and prioritization.

A comparison of SDG&E's Table 8-1 estimated risk reduction in WMP R0 and R1 for its Combined Covered Conductor (CCC) and Strategic Undergrounding (SUG) programs, shows the following:

WMP R0	2026	2027	2028	Total	Risk Reduction per Mile
SUG Miles	0	0	50	50	per wine
CC Miles	50	50	30	130	
SUG Risk Reduction	0	0	93.38%		
CCC Risk Reduction	23.8%	34.4%	43.9%		
WMP R1					
SUG Miles	0	0	50	50	
CC Miles	50	50	30	130	
SUG Risk	0	0	4.05%	4.05%	.081%
Reduction					
CCC Risk	0.13%	0.40%	0.27%	0.80%	.0062%
Reduction					

Table 1 - Comparison of SDG&E's annual hardening program showing relative (R0) and system-wide (R1) risk reduction for its Strategic Undergrounding (SUG) and Combined Covered Conductor (CCC) programs.

In its original filing, SDG&E calculated a relative risk reduction, whereas at OEIS's direction its revision shows the system-wide risk reduction from these two programs. Calculated risk reduction per mile of mitigation for both programs is shown in the final two rows.

A dramatic difference can be seen between the two tables, particularly when the risk reduction per mile is compared. SDG&E claims a risk reduction per mile that is 12X larger for SUG than it is for CCC, further exacerbating the confusion described in Additional Concern #1b, in

which the fact that covered conductor in combination with FCP and PSPS has an estimated ignition reduction efficiency of 97.78%,⁸ and yet SDG&E shows a remarkably low risk reduction efficiency for its CCC combination.

Some of the reasons are understood, and SDG&E has added several pages of additional clarification, which will be discussed in another section. In particular, SDG&E's "risk averse" scaling greatly amplifies differences between SUG and CCC. Examination of Appendix G reveals another source of this amplification.

2.3.2. Appendix G – Selection of Mitigation

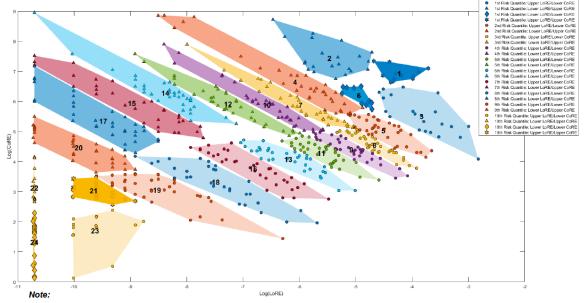
Appendix G shows SDG&E's calculation of risk per circuit segment and their claimed effectiveness and cost for all mitigations. SDG&E presents its proposed risk reduction program on each of the mitigation tabs, which also specify the year that the mitigations will be put into place. Hardening mitigations are shown on tabs CCC and SUG, and these show candidate circuit segments for mitigation for covered conductor (2026-2028) and for undergrounding (2028 only).

As per CPUC regulations, SDG&E calculates a risk tier for each of its mitigations. SDG&E has recently developed a new methodology for dividing risk into tiers, called Homogeneous Tranching Methodology (HTM). This methodology is described in SDG&E's RAMP filing Volume 1, Chapter RAMP - 3: Risk Quantification Framework. The advantage of SDG&E's new methodology is that it applies an ordinal ranking to the risk tiers, allowing them to be compared directly. For wildfire, these are further divided into HFTD risk tier, as shown below:

8 1

⁸ Rejection; p. 4.

⁹ A.25-05-013; APPLICATION OF SAN DIEGO GAS & ELECTRIC COMPANY (U 902 M) TO SUBMIT ITS 2025 RISK ASSESSMENT AND MITIGATION PHASE REPORT; May 15, 2025. (SDG&E RAMP).


Table 1: Wildfire and PSPS
Tranche Identification

Class	Number of LoRE- CoRE Pairs	Number of Resulting Tranches HTM	
Non-HFTD	3,913 (feeder - segments)	20	
HFTD (Tier-2)	472 (feeder- segments)	22	
HFTD (Tier-3)	308 (feeder- segments)	22	

Table 2 - SDG&E HTM tranches for wildfire and PSPS risk.¹⁰

A graphic example of how the tranches are set up for wildfire was presented in SDG&E's December 2024 RAMP workshop:

Wildfire (without PSPS) - HTM Example (as one Class)

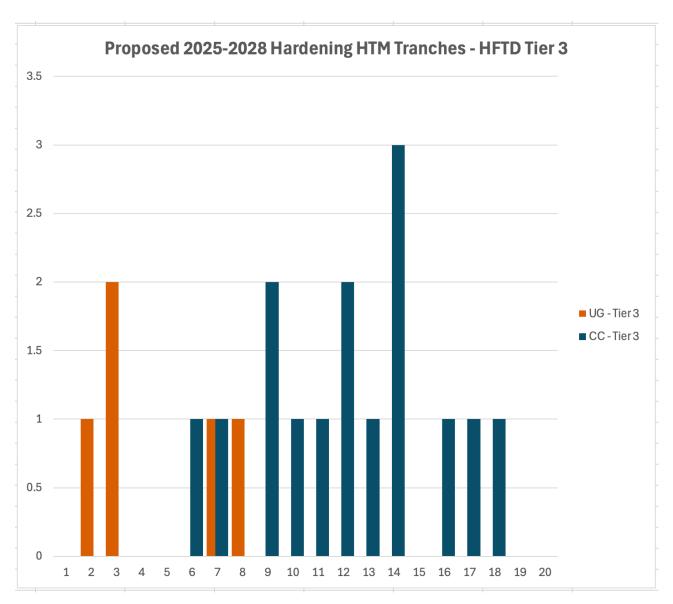
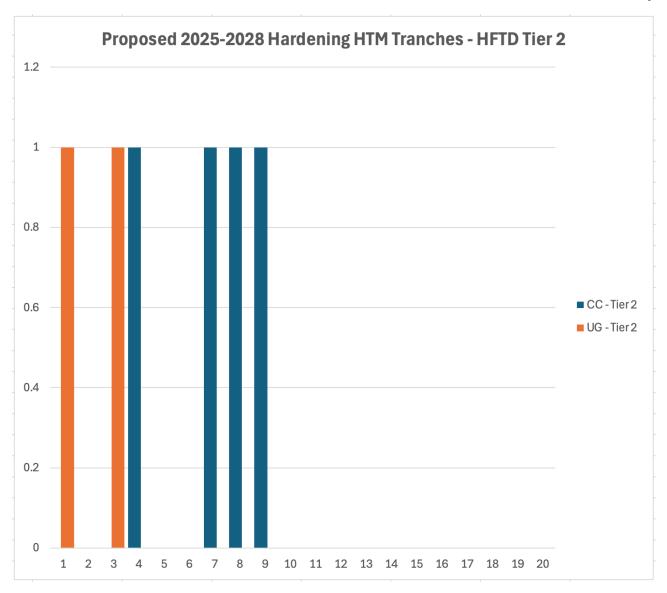


Figure 1 - Example of HTM tranching applied to wildfire risk. Each tranche is denoted by a different colored polygon, with the highest risk ranked 1 (top right) and the lowest risk ranked 24 (bottom left).¹¹

¹⁰ SDG&E RAMP; SDGE-Risk-4 Wildfire and PSPS-10.


¹¹ SDG&E slide deck 2025 RAMP WORKSHOP; December 14, 2024; p. 25.

Appendix G lists the HTM tranche and HFTD tier for each circuit segment that it proposes for undergrounding or covered conductor mitigation. The number of circuits in this set belonging to each HTM tranche are plotted below for HFTD Tier 3 and HFTD Tier 2, respectively.

Figure 2 - Count of circuit segments proposed for hardening mitigation in SDG&E's Appendix G in each HTM tranche for HFTD Tier 3.¹²

 $^{^{\}rm 12}$ Workpaper SDG&E_2026-2028_Base-WMP_Appendix G Supporting Data_R1-jwm.xlsx; Tab HTM Tranche.

Figure 3 - Count of circuit segments proposed for hardening mitigation in SDG&E's Appendix G in each HTM tranche for HFTD Tier 2.¹³

What becomes immediately apparent when using ordinal ranking of risk tranches is that SDG&E is assigning its highest risk tiers for undergrounding. This is confirmed by SDG&E's response to MGRA Data Request #7-1, which states that "While the difference in mitigation effectiveness is close to 40%, SUG's application to higher-risk areas results in a greater risk reduction per mile."

SDG&E's claimed motivation for this would likely be that because the circuits are higher risk they should be given the most effective mitigation. However, the impact of SDG&E's proposed

¹³ Id.

assignments is that these higher risk circuits are being left unmitigated until SDG&E obtains the funding and approval to mitigate them, likely 2028 at the earliest, leaving residents of the SDG&E service area exposed to potential ignitions from these high risk circuits in the meantime.

SDG&E's claim is also highly dependent on its use of risk-averse scaling, which amplifies the difference between SUG and CCC

2.3.3. Effect of Risk-Averse Scaling and Circuit Selection on Risk Reduction

MGRA's Data Request #7 asked SDG&E to provide Appendix G without risk-averse scaling. SDG&E's response can be found in Appendix A, while the alternate Appendix G file SDG&E provided is in the MGRA Workpapers.¹⁴ Additional analysis was applied to the SDG&E spreadsheets:

- All risk reduction for each mitigation option was summed.
- New tabs CCC_swap and SUG_swap were created that exchange mitigation for circuits scheduled for 2026 CCC mitigation with circuits scheduled for 2028 SUG mitigation.

These result in the following risk reduction estimates (compare to Table 1):

SDGE Response MGRA-2026-8 Q2 Appendix G WMP BCR NoAversion 2025 07 17 v4 Q2&Q3-jwm.xlsx

WMP R1	2026	2027	2028	Total	Risk
Neutral					Reduction
					per Mile
SUG Miles	0	0	50	50	
CC Miles	50	50	30	130	
SUG Risk	0	0	2.52%	2.52%	.050%
Reduction					
CCC Risk	0.20%	0.37%	0.26%	0.83%	.0064%
Reduction					
WMP R1					
Neutral/Swap					
SUG Risk	0	0	0.57%	0.57%	.011%
Reduction					
CCC Risk	1.87%	0.37%	0.26%	2.50%	.019%
Reduction					

Table 3 - Risk reduction per year using SDG&E Appendix G model with 1) neutral risk attitude and 2) swapping circuits planned for CCC in 2026 with circuits planned for SUG in 2028. ¹⁵

Switching to risk-neutral scaling (no scaling function) reduces the risk reduction advantage of SUG over CCC from 12X to 8X. However, this effect is small compared to the bias caused by circuit selection. Swapping the 50 miles of circuit planned for 2026 mitigation with the 50 miles of circuit planned for 2028 mitigation reverses the result, showing that the CCC circuits have almost double the risk reduction per mile shown for the SUG circuits, in spite of the fact that SDG&E uses a (incorrectly and excessively) low estimate for covered conductor risk reduction efficiency. This suggests that SDG&E is "reserving" circuits for undergrounding mitigation and using covered conductor on comparatively low risk circuits. Additional evidence for this risk deferral can be seen in SDG&E's treatment of top-ranked risk circuits.

2.3.4. Discussion: Risk Mitigation Deferral (Additional Concern #2)

OEIS Additional Concern #2 states:

"An electrical corporation must prioritize wildfire mitigation activities addressing the highest-risk circuits, segments, or spans within its service territory and design its risk evaluation process and wildfire mitigation strategies 'to achieve maximum feasible risk reduction.' SDG&E should plan its grid hardening targets to address the highest risk areas." ¹⁶

1

¹⁵ Id.

¹⁶ OEIS Rejection p. 5.

SDG&E is leaving a remarkable amount of risk "on the table" by choosing to mitigate lower-ranked risk circuits in the 2026-2028 timeframe. We can only suppose its motivations for doing so, but there is little evidence that SDG&E is using calculated risk as a primary motivation for its hardening priorities. This is leaving residents of the SDG&E service area at greater risk for an indeterminate period of time. This is not acceptable to us as residents and should not be acceptable to Energy Safety.

Sempra is now moving forward with its 2026-2028 GRC cycle, with the RAMP proceeding now active. It plans to introduce an EUP application this year, and it may be that some of the tabled risk will re-appear in that application. However, if this is SDG&E's strategy it could delay mitigation of the riskiest areas of the SDG&E service area by several years. It also makes mitigation contingent on an as-yet unspecified application. Energy Safety should require that SDG&E fully explain its prioritization. If the utility claims that the long term risk to customers resulting from deferred hardening will be more than compensated by the incremental improvement from undergrounding, it should be made to demonstrate that this is the case. If it cannot demonstrate this its WMP should be rejected.

Recommendations:

SDG&E responses to Energy Safety's resubmission requirements confirm that it
does not adequately prioritize its highest risk circuits. Energy Safety should reject
SDG&E's WMP until and unless it can provide documentation justifying its current
prioritization or providing a new prioritization adequately mitigating high risk
circuits.

3. ADDITIONAL CONCERNS

3.1. a. Lifecycle Costs

MGRA agrees with SDG&E's assertion that a correct cost/benefit analysis should incorporate all end-to-end lifecycle costs. The additional detail provided in Section 6.1.3.1.1 provides previously missing transparency into SDG&E's methodology for calculating lifecycle costs. However, SDG&E makes a number of assumptions regarding these costs, and the majority of these assumptions appear to skew in favor of underground mitigation.

Table 6-3 estimates the long-term foundational costs for mitigation programs. SDG&E explains that it allocates costs using the following criteria:

"Depending on the specific characteristics of each program, costs are allocated based on subject matter expert consideration:

- If an initiative only supports Combined Covered Conductor, 100 percent of the cost is assigned to this mitigation and 0 percent is assigned to Strategic Undergrounding (e.g., Aviation Firefighting Program).
- If an initiative mostly supports Combined Covered Conductor, 75 percent of the cost is assigned to this mitigation and 25 percent is assigned to Strategic Undergrounding (e.g., Public Emergency Communication Strategy).
- If an initiative supports both Combined Covered Conductor and Strategic

 Undergrounding, the cost is distributed equally between both mitigations (e.g.,

 Enterprise Data Foundation and Risk Methodology and Assessment)."17

 Initiative costs are estimated on a per mile-year basis.

There are several issues with SDG&E's proposed costs assignments:

3.1.1. Outage/PEDS/PSPS-related mitigation programs

A number of programs are dedicated to or mostly associated with prevention and mitigation of issues arising from power shutoff. These programs include:

- Standby Power Program
- Resiliency Assessment
- Generator Assistance
- Public Emergency Communication Strategy

While there is no dispute that undergrounding effectively mitigates PSPS/PEDS-related risks and costs, this is only the case when all upstream circuit segments are also outside of the

-

¹⁷ WMP R1; p. 92.

PSPS/PEDS area. Hence there is a threshold effect – initial undergrounding of segments will not result in much PSPS risk reduction because not all upstream segments are mitigated. In fact, the listed programs are a cost to the SDG&E system *as a whole*. Substantial portions of the overhead system requiring PSPS and PEDS are not combined covered conductor. Undergrounding to the extent it eliminates PSPS and PEDS program costs represents cost avoidance. A realistic representation of undergrounding would show that undergrounding benefits increase over time in a manner proportional to the amount of underground hardening that is performed.

Additionally, covered conductor allows higher PEDS/PSPS wind speed thresholds, and as shown in multiple MGRA filings this will result in a significant reduction in the duration, scope, and frequency of PSPS outages. Energy Safety should verify that SDG&E's cost allocation correctly incorporates these benefits, which will result in a lower overhead cost allocation than would be in place for unhardened lines.

Recommendations:

- SDG&E lifecycle calculations for PSPS/PEDS related mitigation programs should have underground cost allocations that reduce over time in a manner representing the degree to which undergrounding is likely to mitigate upstream circuits.
- Overhead cost allocation applied to covered conductor needs to incorporate reduction in cost due to higher PSPS/PEDS thresholds.

3.1.2. General Wildfire Mitigation

Some of the SDG&E programs generally support wildfire mitigation in the SDG&E service area. These include:

- Aviation Firefighting
- Weather Station Maintenance and Calibration
- Emergency Preparedness and Recovery

These programs are primarily if not wholly assigned to Overhead Cost Allocation. This is an incorrect assignment, as these programs are specifically tailored to climate and wildfire, or generally represent a public service.

SDG&E aviation firefighting is not solely dedicated to battling wildfires from overhead equipment. Rather it "serves as a wildfire suppression resource that is always available in the region." SDG&E states that "overall benefit of the program to the community is likely much larger" than the benefit of mitigation of utility-related fires alone. As residents of a wildfire-prone community, people in the Ramona area benefit from extra firefighting resources, regardless of their funding source. But should these resources be sponsored by a utility?

Aviation firefighting capability makes fiscal sense for a utility 1) to the extent that the utility represents a wildfire risk and 2) the capability reduces risk to utility equipment. With regard to the first point, at a certain level of risk reduction (regardless of mitigation providing that risk reduction), it might no longer be necessary to fund firefighting equipment. If SDG&E wishes to assign aviation firefighting as a long-term cost associated with infrastructure it should define at what point it would in its future risk reduction journey it would consider aerial firefighting no longer necessary. With regard to the second point, aerial firefighting would protect overhead equipment to a greater extent than underground equipment, but it is not likely that its investment is justified from risk reduction to equipment alone.

While MGRA supports SDG&E's aerial firefighting program, it does not belong in the long term strategic cost calculation for differentiating CCC and SUG costs. Likewise with SDG&E's weather station program. This program provides a substantial public benefit by providing accurate weather information in high fire risk areas. Likely this program would not be funded by a utility if it were not for its equipment potentially causing wildfire risk. Again, in the case that wildfire risk was to be reduced sufficiently (through CCC, SUG, or other mitigation), SDG&E might decide to discontinue the program. However, its cost should not be assigned to CCC alone, so this program also should either not be included in Table 6-3 or assigned equal weighting for CCC and SUG.

Finally, Emergency Preparedness and Recovery is critical for SDG&E to have in place in a wildfire-prone area, regardless of whether wildfires originate from utility equipment or other sources.

¹⁸ SDG&E WMP R1; p. 227.

¹⁹ Id

²⁰ One example in which SDG&E equipment contributed to the successful suppression of a wildfire under critical fire conditions was the 2020 Sawday fire, which started in the same general area as the 2007 Witch fire under Santa Ana conditions.

These are all valuable programs. The question of whether ratepayers should be funding them rather than taxpayers is valid. Nevertheless residents of wildfire-prone areas benefit from them. However, these programs cannot properly be assigned to "above ground" or "below ground" equipment and should be removed from Table 6-3 or assigned equal Overhead and Undergrounding cost allocations.

3.2. Effectiveness of Covered Conductor (Additional Concern 1.b.)

MGRA's Comments maintained that SDG&E's estimate of covered conductor effectiveness in reducing wildfire risk is seriously low, at only 58%.²¹ Energy Safety's Rejection notes this anomaly, stating that "SDG&E used an effectiveness for reducing overall risk of 58% for combined covered conductor, which includes additional equipment replacements and installations, compared to 99% for strategic undergrounding. Previously, SDG&E estimated covered conductor alone to have an effectiveness of 64.5%, which did not include the benefits of additional mitigations.

Additionally, when considering benefits from early fault detection (EFD), falling conductor protection (FCP), and PSPS, SDG&E estimated a 97.78% reduction in risk. SDG&E did not provide justification as to why it decreased its effectiveness estimates for covered conductor despite including additional mitigations. SDG&E also stated that it calculates the effectiveness for combined covered conductor based on the baseline condition of the asset, but did not use the same methodology for undergrounding."²²

SDG&E provides a transparent explanation of its current methodology in Section 6.1.3.1.5, which explains how it comes to a lower value. To summarize:

- SDG&E uses calculated risk rather than ignition frequency to estimate risk reduction.
- Risk incorporates consequence, increasing the contribution of ignition drivers likely to occur in high-consequence areas compared to lower-consequence areas.

²¹ MGRA Comments; pp. 51-57. Note that the MGRA estimate for SCE risk reduction was not based on final SCE data. SCE was not able to reproduce data provided in previous years, and its recent data indicates a lower effectiveness than stated in the MGRA SDG&E comments. Depending on assumptions the effectiveness derived from SCE data is now 74-81%. SCE's stated efficiency is 72%.

²² Energy Safety Rejection; pp. 4-5.

- SDG&E uses what it calls "evidence of heat" events in addition to CPUC Reportable
 Ignitions
- "Evidence of heat" events statistically have drivers with a lower covered conductor mitigation efficiency than CPUC reportable events.

SDG&E estimates a CC mitigation effectiveness for CPUC Reportable events of 61.7% (which MGRA maintains is still too low), which when combined with ESD and FCP they estimate at 70.1%.²³ These drop to 50.5% and 61.3% respectively when "evidence of heat" is used.

3.2.1. "Evidence of Heat" as a Risk Proxy

SDG&E increases the number of statistical events from 122 (Reportable ignitions, 2019-2024) to 902 (Reportable ignitions + evidence of heat, 2019-2024), a factor of 7 increase. This can be valuable to the extent that the risk drivers leading to evidence of heat are representative of those that lead to large and catastrophic wildfires. However, the very fact that using this data results in a very significant change in covered conductor estimated ignition reduction implies that there are differences in the distribution of reportable ignitions and evidence of heat events. We can determine the cause of these differences by comparing SDG&E Tables 6-10 and 6-11.

-

²³ SDG&E WMP R1; Table 6-12; p. 122.

Overhead Distribution Ignition-Related Drivers	2024/2025 Subject Matter Expert Ignition- Related Reduction (%)	Total Number of CPUC Reportable Ignitions and Evidence of Heat Events [2019 - 2024]	Fraction CPUC+EoH	Unmitigated Fraction CPUC+EoH	Risk Driver Contribution CPUC + EoH	Total Number of CPUC Reportable Ignitions [2019 - 2024]	Fraction CPUC	Unmitigated Fraction CPUC	Risk Driver Contribution CPUC + EoH
Animal Contact	90%	20	2.2%	0.2%	0.4%	19	15.6%	1.6%	4.0%
Balloon Contact	90%	27	3.0%	0.3%	0.6%	9	7.4%	0.7%	1.9%
Vehicle Contact	80%	20	2.2%	0.4%	0.9%	10	8.2%	1.6%	4.2%
Vegetation Contact	90%	72	8.0%	0.8%	1.6%	11	9.0%	0.9%	2.3%
Other Contact*	50%	47	5.2%	2.6%	5.3%	4	3.3%	1.6%	4.2%
Conductor	90%	123	13.6%	1.4%	2.8%	10	8.2%	0.8%	2.1%
Equipment – Non- Conductor**	39%	412	45.7%	27.9%	56.2%	49	40.2%	24.5%	63.3%
Other All***	10%	151	16.7%	15.1%	30.4%	9	7.4%	6.6%	17.2%
Undetermined****	70%	10	1.1%	0.3%	0.7%	1	0.8%	0.2%	0.6%
Overhead to Underground Connection	75%	20	2.2%	0.6%	1.1%	0	0.0%	0.0%	0.0%
Total	n/a	902		49.5%	100.0%	122		38.7%	100.0%

Table 4 - OH distribution ignition related drivers and subject matter expert estimates for Combined Covered Conductor ignition reduction efficiency, obtained from SDG&E's tables 6-10 and 6-11. Four columns (3-6,7-10) show total events reported, fraction of events represented by that driver, and the unmitigated fraction for that driver. Columns 3-6 show SDG&E's total including "evidence of heat" events while columns 7-10 show CPUC reportable ignitions only. Green highlighting indicates drivers for which that driver makes up a significatly larger fraction of reportable ignitions than evidence of heat events, and red highlighting shows the opposite.²⁴

Table 4 shows that there are distinct differences between the drivers that cause "evidence of heat" events and those causing ignitions submitted to the CPUC. In particular the "evidence of heat" events are more likely to be assigned to the "Other" or "Other Contact" categories. This is important because these two categories have very low SME estimates for CCC ignition reduction efficiency. As a result, while SDG&E estimates that 38.7% of reportable ignitions are unmitigated, this number rises to 49.5% if "evidence of heat" events are used.

Does "evidence of heat" represent a good risk proxy? About this SDG&E says that:

"SDG&E considers this approach to be more statistically robust and reflective of real-world conditions. Including all available ignition-related data, regardless of reporting thresholds enhances confidence in mitigation effectiveness estimates and ensures that decisions on long-term wildfire mitigation strategies are grounded in a thorough, data-driven evaluation of asset performance and ignition behavior under field conditions."

²⁴ Workbook SDG&E 2026-2028 Base-WMP SDGE Tables R1-jwm.xlsx; Tab SDGE Table-6-10-11.

If these are "real world conditions", then "evidence of heat" must demonstrate potential for ignitions, and it would be expected that the distribution of risk drivers would be similar for both distributions. However,

Table 4 shows that they most definitely are not from the same distribution. Testing similarity with a chi squared distribution shows a probability of less than 10⁻¹⁴ that these two samples arise from the same statistical distribution.²⁵

Energy Safety's goal is to reduce or eliminate the risk of utility-related catastrophic wildfire, not utility related heat release. Including the sample including "evidence of heat" leads to estimates of wildfire risk that do not correspond to actual ignition data. This is not a "data-driven" approach, but simply incorrect. The art of data analysis, whether it is done using calculational approaches or machine learning, is to reduce data into the form of information. Adding more data to a sample only helps if it is statistically similar to the original sample. Otherwise it simply hides the signal being studied. The "evidence of heat" data increases the statistical sample but decreases its quality by including ignition drivers that have not been shown to be and are not expected to be causative of catastrophic wildfire ignition.

Recommendation:

• SDG&E should continue to use ignition data rather than evidence-of-heat data, since the former correlates more readily with the likelihood of catastrophic wildfire.

3.2.2. Use of FCP efficacy is not correct

SDG&E calculates the combined effectiveness of covered conductor, falling conductor protection (FCP) and Early Fault Detection (ESD) as follows:

Combined Effectiveness = $1 - [(1 - CC\ Efficacy) \times (1 - FCP\ Efficacy) \times (1 - EFD\ Efficacy)^{26}]$

This relationship is only true if the efficacies are uncorrelated. However, the greatest vulnerability of covered conductor mitigated circuits is tree fall-in. This vulnerability is largely mitigated by FCP. FCP on its own has a very modest risk reduction efficacy, since most ignition risk drivers have nothing to do with falling conductors. However, SDG&E has estimated that the

²⁵ See Workpapers, python file Chi2-Table-6-10-11.py.

²⁶ SDGE WMP R1; p. 121.

efficacy of FCP is high for falling conductors and breaks in conductors. This calculation needs to be performed on a driver-by-driver basis with an independent FCP efficacy calculated for each driver.

Recommendation:

• SDG&E should re-calculate its combined effectiveness based on FCP effectiveness for each individual risk driver rather than an average.

4. SDG&E'S ADDITIONAL REVISIONS

4.7. Risk Aversion (Section 5.2.2.3)

SDG&E adds additional narrative on its application of its risk-averse scaling function in Section 5.2.2.3, responding in part to comments made by MGRA in its comments.²⁷

SDG&E explains that:

"The primary motivation for incorporating a Risk Attitude function into SDG&E's risk-informed decision framework was to capture the aforementioned aversion to highly devastating disasters. These events not only incur substantial costs due to loss of life and physical destruction but also impose significant intangible social and economic impacts on the affected communities. By integrating this risk-averse approach, SDG&E aims to better account for potential societal impacts and prioritize wildfire mitigation measures in the riskiest areas of its service territory. This method is consistent with CPUC guidance, which allows utilities to present both risk-neutral and risk-averse estimates. Applying risk aversion to financial consequences (e.g., property loss) does not equate money with human life. Instead, it reflects the disproportionate societal impact of large-scale economic and societal losses, such as those from wildfires that destroy entire communities."²⁸

SDG&E particularly tries to respond to MGRA's criticism that its use of risk aversion to apply to financial losses is inappropriate. However, SDG&E's illustrative Figure 5-7 shows that even at relatively modest losses of \$160 million, a 3X multiplier is already being applied, and this

²⁷ MGRA Comments; pp. 13-20.

²⁸ SDG&E WMP R1; p. 43.

increases steeply with the cost. This greatly artificially inflates the benefits of avoided cost. SDG&E uses the example of the Eaton fire in its reply to MGRA's comments,²⁹ stating that society would be willing to pay more than the cost of the 10,000 homes to prevent such a large catastrophe from occurring. This might be true at some level. After all, homeowners pay a risk premium for insurance. However in this particular case, assuming \$1 million value for each of the homes the economic cost of lost property from the Eaton wildfire would be \$10 billion. Using SDG&E's scaling function, SDG&E's reasonable cost for loss avoidance in the 2025 Eaton fire would be: \$10 B X (10,000 X (\$1 M/\$16 M))^{1.47} = \$10 B X (625 life equivalents)^{1.47} = \$128 trillion.

This is kind of crazy.

As explained in MGRA's Comments SDG&E bases its risk-averse attitude on several papers, and these were based on fatality-aversion, not economic loss aversion. Even fatality aversion is not a universally accepted principle, as shown in the review article that MGRA cites. (Contrary to SDG&E's assertion that this article was selected due to "confirmation bias", 30 this article was a review identifying both risk averse and risk neutral studies.) Whether or not risk aversion represents the attitude of "society" should be determined by the public bodies such as Energy Safety and the CPUC that are formed to regulate utilities and protect society, not by an entity that has a strong perverse financial incentive to interpret society's needs in a self-serving way.

MGRA requested that SDG&E provide a version of Appendix G without risk scaling. SDG&E complied.³¹ OEIS should use this version for its analysis of SDG&E's filings.

It should also be emphasized that:

- While the CPUC permits utilities to use scaling functions, SDG&E's scaling function has not yet been reviewed by the CPUC.
- The fact that the CPUC is allowing risk-averse scaling is not binding on OEIS.

²⁹ SDG&E Reply; p. 3.

³⁰ Id· n

SDG&E MGRA Data Request Response #7. SDGE Response MGRA-2026-8 Q2 Appendix G WMP BCR NoAversion 2025 07 17 v4 Q2&Q3-jwm.xlsx

Recommendations:

 Energy Safety should only use risk-neutral scaling for its evaluation of SDG&E's WMP.

5. CONCLUSION

5.1. SDG&E Appears to be Choosing Parameters and Data that Favor Undergrounding

Taken as a whole, SDG&E appears to have made a number of various choices in the parameters and data it used to construct its WMP. Many of these work in favor of undergrounding. Taken on their own each might be coincidental. These choices include:

- SDG&E claims an undergrounding cost of \$2 million per mile. Previous utility estimates use \$3 million per mile.
- SDG&E's covered conductor efficacy estimates are 10% lower compared to those of SCE and that come from analysis of actual field data.
- CCC efficacy estimates are lowered another 10% by inclusion of the "evidence of heat" events, which make up the largest portion of their risk and which have statistically different drivers than the drivers leading to reportable ignitions.
- SDG&E fails to incorporate FCP correctly, and FCP mitigates drivers most likely to cause ignition under high wind fire weather.
- Some lifecycle costs that apply to the SDG&E system as a whole are being inappropriately assigned to only the covered conductor program.
- SDG&E's application of a "risk averse" scaling function that has historically used for loss-of-life to adjust economic losses is arbitrary and leads to 1) unreasonable amplification of the benefit/cost ratio for mitigation and 2) amplification of the differential mitigation effectiveness between CCC and SUG.
- For its 2026-2028 activities, SDG&E has assigned only moderate risk circuits to the CCC program.
- SDG&E only proposes hardening one of its top risk circuits in the 2026-2028 timeframe.

• SDG&E is planning to submit an EUP application for circuit undergrounding under the provisions of SB 884, possibly later this year.

These are all have the effect of increasing the Benefit/Cost Ratio (BCR) and amplifying the advantages of SUG over CCC. They also serve the purpose of "reserving" risk for an erstwhile future SDG&E undergrounding program, leaving residents exposed to risk in the meantime. Taken as a whole these choices appear to be a policy choice by SDG&E to maximize its undergrounding program at the expense of other potentially more cost-effective mitigations.

5.2. SDG&E's 2026-2028 WMP R1 Should Be Rejected

While it is a severe step, Energy Safety should reject SDG&E's WMP on the grounds that the plan inadequately mitigates risk in the 2026-2028 timeframe. While SDG&E's R1 resubmission is a significant improvement over its R0 filing, Energy Safety's astute requirement that SDG&E show system-wide risk reduction has unveiled some very serious problems – namely that SDG&E is making little attempt to address its highest risk circuits in the 2026-2028 timeframe. SDG&E appears to be keeping risk "on the table" in order to have the riskiest circuits available for a future erstwhile undergrounding application.

A rejection of the WMP should not be seen as a punitive move but rather a remedial one. The timing of this WMP with respect to SDG&E's rate cycle is critical. SDG&E's RAMP will be analyzed this fall, it may issue its EUP later this year, and it will issue its 2028-2030 GRC in the spring of 2026. Correction of SDG&E planning now will percolate into all these proceedings and into actions on the ground. SDG&E's RAMP filing is based on the same analysis as its WMP. Corrections to the WMP in calculation methods and in prioritization will filter into both the RAMP and GRC proceedings. Furthermore, this will be exemplary for other major utilities as well and help define the limits to which utilities are allowed to stretch the rules to achieve their desired policy and financial outcomes.

Energy Safety's mandate is primarily safety, while the CPUC has a broader mission to balance safety and affordability. SDG&E's WMP R1 is deficient in this area: safety. All of the "tabled" risk remains active and threatening residents of and near the SDG&E service area, including the Mussey Grade neighborhood and other areas of Ramona. Undergrounding has a place

in utility mitigation portfolios, and there is a right way to calculate what that place is. SDG&E has consciously chosen to do it the other way. MGRA respectfully requests that Energy Safety use its full authority to bring SDG&E back into line to ensure that their wildfire mitigation program proceeds in an effective and efficient manner to protect the residents of the SDG&E service area.

By: /S/ Joseph W. Mitchell

Joseph W. Mitchell, Ph.D.
M-bar Technologies and Consulting, LLC
19412 Kimball Valley Road
Ramona, CA 92065
(858) 228 0089
jwmitchell@mbartek.com

On behalf of the Mussey Grade Road Alliance.

APPENDIX A - MGRA DATA REQUESTS

Date Received: 07-24-2025 Date Submitted: 07-29-2025

I. GENERAL OBJECTIONS

- 1. SDG&E objects generally to each request to the extent that it seeks information protected by the attorney-client privilege, the attorney work product doctrine, or any other applicable privilege or evidentiary doctrine. No information protected by such privileges will be knowingly disclosed.
- 2. SDG&E objects generally to each request that is overly broad and unduly burdensome. As part of this objection, SDG&E objects to discovery requests that seek "all documents" or "each and every document" and similarly worded requests on the grounds that such requests are unreasonably cumulative and duplicative, fail to identify with specificity the information or material sought, and create an unreasonable burden compared to the likelihood of such requests leading to the discovery of admissible evidence. Notwithstanding this objection, SDG&E will produce all relevant, non-privileged information not otherwise objected to that it is able to locate after reasonable inquiry.
- 3. SDG&E objects generally to each request to the extent that the request is vague, unintelligible, or fails to identify with sufficient particularity the information or documents requested and, thus, is not susceptible to response at this time.
- 4. SDG&E objects generally to each request that: (1) asks for a legal conclusion to be drawn or legal research to be conducted on the grounds that such requests are not designed to elicit facts and, thus, violate the principles underlying discovery; (2) requires SDG&E to do legal research or perform additional analyses to respond to the request; or (3) seeks access to counsel's legal research, analyses or theories.
- 5. SDG&E objects generally to each request to the extent it seeks information or documents that are not reasonably calculated to lead to the discovery of admissible evidence.
- 6. SDG&E objects generally to each request to the extent that it is unreasonably duplicative or cumulative of other requests.
- 7. SDG&E objects generally to each request to the extent that it would require SDG&E to search its files for matters of public record such as filings, testimony, transcripts, decisions, orders, reports or other information, whether available in the public domain or through FERC or CPUC sources.
- 8. SDG&E objects generally to each request to the extent that it seeks information or documents that are not in the possession, custody or control of SDG&E.
- 9. SDG&E objects generally to each request to the extent that the request would impose an undue burden on SDG&E by requiring it to perform studies, analyses or calculations or to create documents that do not currently exist.
- 10. SDG&E objects generally to each request that calls for information that contains trade

Date Received: 07-24-2025 Date Submitted: 07-29-2025

secrets, is privileged or otherwise entitled to confidential protection by reference to statutory protection. SDG&E objects to providing such information absent an appropriate protective order.

II. EXPRESS RESERVATIONS

- 1. No response, objection, limitation or lack thereof, set forth in these responses and objections shall be deemed an admission or representation by SDG&E as to the existence or nonexistence of the requested information or that any such information is relevant or admissible.
- 2. SDG&E reserves the right to modify or supplement its responses and objections to each request, and the provision of any information pursuant to any request is not a waiver of that right.
- 3. SDG&E reserves the right to rely, at any time, upon subsequently discovered information.
- 4. These responses are made solely for the purpose of this proceeding and for no other purpose.

Date Received: 07-24-2025 Date Submitted: 07-29-2025

III. RESPONSES

QUESTION 1

A comparison of SDG&E's Table 8-1 estimated risk reduction in WMP R0 and R1 for its CCC and SUG programs, ostensibly showing per circuit and system wide risk reduction, is as follows:

WMP R0	2026	2027	2028	Total	Risk Reduction per Mile
SUG Miles	0	0	50	50	
CC Miles	50	50	30	130	
SUG Risk Reduction	0	0	93.38%		
CCC Risk Reduction	23.8%	34.4%	43.9%		
WMP R1					
SUG Miles	0	0	50	50	
CC Miles	50	50	30	130	
SUG Risk Reduction	0	0	4.05%	4.05%	.081%
CCC Risk Reduction	0.13%	0.40%	0.27%	0.80%	.0062%

- a. Does this table accurately calculated SDG&E's Table 8-1 estimations and results of Appendix G? If not please provide any corrections.
- b. In light of OEIS Additional Concern 1.b, how does SDG&E estimate that the amount of risk reduced per mile of SUG is 12X more than the amount of risk reduced by CCC? Please provide supporting technical documentation calculations, and examples.

RESPONSE 1

a. This table is accurately calculated in Appendix G for both WMP R0 and WMP R1. The key difference in the reported risk reductions lies in the scope of the baseline used. In WMP R0, risk reduction was calculated based on the feeder-segments included in the mitigation scope (tab CBR Summary by Risk, column H). In contrast, WMP R1 calculates risk reduction relative to the total service territory baseline risk (tab CBR Summary by Risk, column V), in alignment with the latest guidance from the OEIS.¹

¹ Letter from Office of Energy Infrastructure Electrical Safety Policy Division Program Manager Nicole Dunlap to Brian D'Agostino, *Rejection and Resubmit Order for the San Diego Gas & Electric Company 2026-2028 Base Wildfire Mitigation Plan*, June 24, 2025. See Non-Conforming Element 3. Available at https://efiling.energysafety.ca.gov/Search.aspx?docket=2026-2028-Base-WMPs

Date Received: 07-24-2025 Date Submitted: 07-29-2025

b. Risk reduction is driven by both baseline risk and mitigation effectiveness. SUG is modeled with a 98% mitigation effectiveness, making it generally more cost-effective on the riskiest portions of the system. In contrast, CCC, with a 61.7% effectiveness, is implemented on segments with comparatively lower risk. While the difference in mitigation effectiveness is close to 40%, SUG's application to higher-risk areas results in a greater risk reduction per mile.

Date Received: 07-24-2025 Date Submitted: 07-29-2025

QUESTION 2

Using neutral risk scaling rather than risk averse scaling, please provide:

- a. Table 8-1 entries for SUG and CCC hardening
- b. Appendix G with additional tabs showing neutral risk scaling for at least SUG and CCC hardening.

RESPONSE 2

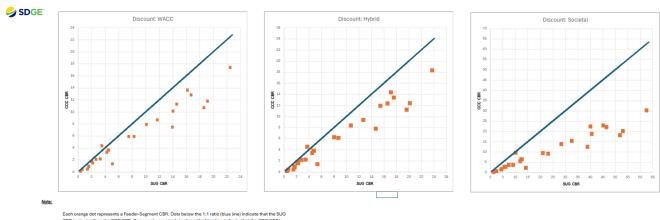
a. Neutral risk scaling only affects the "% Risk Reduction <YEAR>" columns in table 8-1, as such, only these columns have been included. Neutral risk scaling is referred to as "NoAversion":

	% Risk Reduction 2026 (NoAversion)	% Risk Reduction 2027 (NoAversion)	% Risk Reduction 2028 (NoAversion)
Combined Covered Conductor	0.20%	0.37%	0.26%
Strategic Undergrounding	n/a (none scoped)	n/a (none scoped)	2.52%

b. See attached file titled "SDGE Response MGRA-2026-8-07_Q2_Appendix_G_WMP_BCR_NoAversion_2025_07_17_v4_Q2&Q3.xlsx." This is a version of appendix G with NoAversion risk attitude.

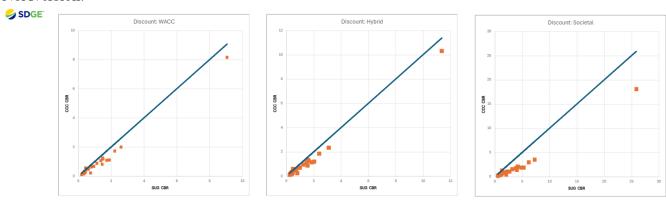
Date Received: 07-24-2025 Date Submitted: 07-29-2025

QUESTION 3


Assuming that SDG&E entries for 2026, 2027, and 2028 assume a certain set of proposed circuits for mitigation using SUG and CCC, swap the 50 miles of circuits planned for CCC mitigation in 2026 (CCC tab 17-20) with the 50 miles of circuits planned for undergrounding in 2028 (SUG tab 17-23). This is to test the sensitivity of the risk reduction result to the circuits being selected. Provide both Appendix G tabs for CCC and SUG and Table 8-1 entries for SUG and CCC:

- a. Using SDG&E's risk averse scaling function
- b. Using risk neutral scaling

RESPONSE 3


These comparisons are available in Appendix G available at https://www.sdge.com/2026-2028-wildfire-mitigation-plan. The raw comparison between the two at the feeder segment level can be found in the tab "SUG_vs_CCC," as well as tabs "SUG_comp" and "CCC_comp." Visual representations of the compared CBRs can be found in the "SUG_vs_CCC_plot" tab. There is one plot for each discount rate. Each orange square represents a feeder segment. The x axis measures the SUG CBR for the feeder segment, and the y axis measures the CCC CBR. The blue line denotes the point at which the SUG & CCC CBRs are equal. Points below the line indicate a higher SUG CBR and points above the line indicate a higher CCC CBR. These same resources can be found in the attached version of Appendix G that uses "NoAversion" risk attitude – as denoted in question 2. The plots can also be found below:

Aversion:

Date Received: 07-24-2025 Date Submitted: 07-29-2025

NoAversion:

Each orange dot represents a Feeder-Segment CBR. Dots below the 1:1 ratio (blue line) indicate that the SUG C greater than the CCC CBR. Conversely, orange dots above the blue line indicate that the CCC CBR is greater th

Date Received: 07-24-2025 Date Submitted: 07-29-2025

END OF REQUEST

Date Received: 07-25-2025 Date Submitted: 07-30-2025

I. GENERAL OBJECTIONS

- 1. SDG&E objects generally to each request to the extent that it seeks information protected by the attorney-client privilege, the attorney work product doctrine, or any other applicable privilege or evidentiary doctrine. No information protected by such privileges will be knowingly disclosed.
- 2. SDG&E objects generally to each request that is overly broad and unduly burdensome. As part of this objection, SDG&E objects to discovery requests that seek "all documents" or "each and every document" and similarly worded requests on the grounds that such requests are unreasonably cumulative and duplicative, fail to identify with specificity the information or material sought, and create an unreasonable burden compared to the likelihood of such requests leading to the discovery of admissible evidence. Notwithstanding this objection, SDG&E will produce all relevant, non-privileged information not otherwise objected to that it is able to locate after reasonable inquiry.
- 3. SDG&E objects generally to each request to the extent that the request is vague, unintelligible, or fails to identify with sufficient particularity the information or documents requested and, thus, is not susceptible to response at this time.
- 4. SDG&E objects generally to each request that: (1) asks for a legal conclusion to be drawn or legal research to be conducted on the grounds that such requests are not designed to elicit facts and, thus, violate the principles underlying discovery; (2) requires SDG&E to do legal research or perform additional analyses to respond to the request; or (3) seeks access to counsel's legal research, analyses or theories.
- 5. SDG&E objects generally to each request to the extent it seeks information or documents that are not reasonably calculated to lead to the discovery of admissible evidence.
- 6. SDG&E objects generally to each request to the extent that it is unreasonably duplicative or cumulative of other requests.
- 7. SDG&E objects generally to each request to the extent that it would require SDG&E to search its files for matters of public record such as filings, testimony, transcripts, decisions, orders, reports or other information, whether available in the public domain or through FERC or CPUC sources.
- 8. SDG&E objects generally to each request to the extent that it seeks information or documents that are not in the possession, custody or control of SDG&E.
- 9. SDG&E objects generally to each request to the extent that the request would impose an undue burden on SDG&E by requiring it to perform studies, analyses or calculations or to create documents that do not currently exist.
- 10. SDG&E objects generally to each request that calls for information that contains trade

Date Received: 07-25-2025 Date Submitted: 07-30-2025

secrets, is privileged or otherwise entitled to confidential protection by reference to statutory protection. SDG&E objects to providing such information absent an appropriate protective order.

II. EXPRESS RESERVATIONS

- 1. No response, objection, limitation or lack thereof, set forth in these responses and objections shall be deemed an admission or representation by SDG&E as to the existence or nonexistence of the requested information or that any such information is relevant or admissible.
- 2. SDG&E reserves the right to modify or supplement its responses and objections to each request, and the provision of any information pursuant to any request is not a waiver of that right.
- 3. SDG&E reserves the right to rely, at any time, upon subsequently discovered information.
- 4. These responses are made solely for the purpose of this proceeding and for no other purpose.

Date Received: 07-25-2025 Date Submitted: 07-30-2025

III. RESPONSES

QUESTION 1

Please provide an Excel spreadsheet showing the circuit segments that were hardened as part of the SDG&E undergrounding program in the 2023-2025 period, including those planned but not completed in 2025, showing:

- a. Circuit feeder segment
- b. Number of miles mitigated
- c. Year(s) that mitigation was performed
- d. Quintile tranche ID assignment of circuit segment.
- e. HTM tranche ID assignment of circuit segment (if available)

RESPONSE 1

SDG&E objects to the request to the extent it requires SDG&E to perform additional analyses and/or studies that do not currently exist, and is thus overly broad and unduly burdensome. SDG&E further objects to the request to the extent the request lacks relevance with respect to to SDG&E's pending 2026-2028 WMP and is not reasonably calculated to lead the discovery of admissible evidence. Subject to and without waiving the foregoing objections, SDG&E responds as follows:

See attached spreadsheet titled:

"SDGE Response MGRA-2026-8-08_Q1and2_nb_output_TU_2025_07_30.xlsx" containing the circuit segments that were undergrounded as part of SDG&E's Strategic Undergrounding program between January 1, 2023 and March 31, 2025.

With respect to requests 1d and 1e, SDG&E is unable to provide tranche information (Quintile Tranche ID or HTM Tranche ID) for feeder segments in the 2023–2025 period. Tranche IDs are calculated based on baseline risk at the start of a planning period (i.e., 2023), and such calculations were not required for these segments at that time. However, as noted in Appendix G of SDG&E's 2026-2028 WMP submission, each feeder segment is associated with a Tranche ID based on the updated 2025 baseline risk.

Date Received: 07-25-2025 Date Submitted: 07-30-2025

QUESTION 2

Please provide an Excel spreadsheet showing the circuit segments that were hardened as part of the SDG&E covered conductor program in the 2023-2025 period, including those planned but not completed in 2025, showing:

- a. Circuit feeder segment
- b. Number of miles mitigated
- c. Year(s) that mitigation was performed
- d. Quintile tranche ID assignment of circuit segment.
- e. HTM tranche ID assignment of circuit segment (if available)

RESPONSE 2

SDG&E objects to the request to the extent it requires SDG&E to perform additional analyses and/or studies that do not currently exist, and is thus overly broad and unduly burdensome. SDG&E further objects to the request to the extent the request lacks relevance with respect to to SDG&E's pending 2026-2028 WMP and is not reasonably calculated to lead the discovery of admissible evidence. Subject to and without waiving the foregoing objections, SDG&E responds as follows:

See attached spreadsheet titled

"SDGE Response MGRA-2026-8-08_Q1and2_nb_output_TU_2025_07_30.xlsx" containing the circuit segments that were hardened as part of SDG&E's Covered Conductor program between January 1, 2023 and March 31, 2025.

With respect to requests 2d and 2e, SDG&E is unable to provide tranche information (Quintile Tranche ID or HTM Tranche ID) for feeder segments in the 2023–2025 period. Tranche IDs are calculated based on baseline risk at the start of a planning period (i.e., 2023), and such calculations were not required for these segments at that time. However, as noted in Appendix G of SDG&E's 2026-2028 WMP, each feeder segment is associated with a Tranche ID based on the updated 2025 baseline risk.

Date Received: 07-25-2025 Date Submitted: 07-30-2025

END OF REQUEST